Smoothing parameter selection for a class of semiparametric linear models
被引:135
作者:
Reiss, Philip T.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Child & Adolescent Psychiat, New York, NY 10016 USA
Nathan S Kline Inst Psychiat Res, Orangeburg, NY 10962 USANYU, Dept Child & Adolescent Psychiat, New York, NY 10016 USA
Reiss, Philip T.
[1
,2
]
Ogden, R. Todd
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, New York, NY USANYU, Dept Child & Adolescent Psychiat, New York, NY 10016 USA
Ogden, R. Todd
[3
]
机构:
[1] NYU, Dept Child & Adolescent Psychiat, New York, NY 10016 USA
[2] Nathan S Kline Inst Psychiat Res, Orangeburg, NY 10962 USA
B-splines;
Functional linear model;
Functional principal component regression;
Generalized cross-validation;
Linear mixed model;
Roughness penalty;
REGRESSION;
SPLINES;
COMPONENT;
TESTS;
D O I:
10.1111/j.1467-9868.2008.00695.x
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Spline-based approaches to non-parametric and semiparametric regression, as well as to regression of scalar outcomes on functional predictors, entail choosing a parameter controlling the extent to which roughness of the fitted function is penalized. We demonstrate that the equations determining two popular methods for smoothing parameter selection, generalized cross-validation and restricted maximum likelihood, share a similar form that allows us to prove several results which are common to both, and to derive a condition under which they yield identical values. These ideas are illustrated by application of functional principal component regression, a method for regressing scalars on functions, to two chemometric data sets.
引用
收藏
页码:505 / 523
页数:19
相关论文
共 22 条
[21]
Ruppert D., 2003, Cambridge Series in Statistical and Probabilistic Mathematics, V12