Stabilization of quantum computations by symmetrization

被引:153
作者
Barenco, A
Berthiaume, A
Deutsch, D
Ekert, A
Jozsa, R
Macchiavello, C
机构
[1] AT&T BELL LABS,RES,MURRAY HILL,NJ 07974
[2] UNIV PLYMOUTH,SCH MATH & STAT,PLYMOUTH PL4 8AA,DEVON,ENGLAND
关键词
quantum computation; error correction;
D O I
10.1137/S0097539796302452
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a method for the stabilization of quantum computations (including quantum state storage). The method is based on the operation of projection into SYM, the symmetric subspace of the full state space of R redundant copies of the computer. We describe an efficient algorithm and quantum network effecting SYM-projection and discuss the stabilizing effect of the proposed method in the context of unitary errors generated by hardware imprecision, and nonunitary errors arising from external environmental interaction. Finally, limitations of the method are discussed.
引用
收藏
页码:1541 / 1557
页数:17
相关论文
共 23 条
  • [1] AHARONOV D, 1995, COMMUNICATION
  • [2] [Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
  • [3] CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES
    BARENCO, A
    DEUTSCH, D
    EKERT, A
    JOZSA, R
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4083 - 4086
  • [4] Berthiaume A., 1994, Proceedings. Workshop on Physics and Computation PhysComp '94, P60, DOI 10.1109/PHYCMP.1994.363698
  • [5] Good quantum error-correcting codes exist
    Calderbank, AR
    Shor, PW
    [J]. PHYSICAL REVIEW A, 1996, 54 (02): : 1098 - 1105
  • [6] DEUTSCH D, 1993, RANK PRIZE FUNDS MIN
  • [7] Quantum error correction for communication
    Ekert, A
    Macchiavello, C
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2585 - 2588
  • [8] Quantum computation and Shor's factoring algorithm
    Ekert, A
    Jozsa, R
    [J]. REVIEWS OF MODERN PHYSICS, 1996, 68 (03) : 733 - 753
  • [9] Quantum-state disturbance versus information gain: Uncertainty relations for quantum information
    Fuchs, CA
    Peres, A
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2038 - 2045
  • [10] Knuth D.E., 1973, ART COMPUTER PROGRAM, VII