Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries

被引:861
作者
Zhao, Qing [1 ]
Liu, Xiaotun [1 ]
Stalin, Sanjuna [1 ]
Khan, Kasim [1 ]
Archer, Lynden A. [1 ,2 ]
机构
[1] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
关键词
INTERPHASE LAYER; METAL ANODE; LI-ION; VOLTAGE; LIQUID;
D O I
10.1038/s41560-019-0349-7
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid-state electrolytes with high room-temperature ionic conductivity and fast interfacial charge transport are a requirement for practical solid-state batteries. Here, we report that cationic aluminium species initiate ring-opening polymerization of molecular ethers inside an electrochemical cell to produce solid-state polymer electrolytes (SPEs), which retain conformal interfacial contact with all cell components. SPEs exhibit high ionic conductivity at room temperature (>1 mS cm(-1)), low interfacial resistances, uniform lithium deposition and high Li plating/striping efficiencies (>98% after 300 charge-discharge cycles). Applications of SPEs in Li-S, Li-LiFePO4 and Li-LiNi0.6Mn0.2Co0.2O2 batteries further demonstrate that high Coulombic efficiency (>99%) and long life (>700 cycles) can be achieved with an in situ SPE design. Our study therefore provides a promising direction for creating solid electrolytes that meet both the bulk and interfacial conductivity requirements for practical solid polymer batteries.
引用
收藏
页码:365 / 373
页数:9
相关论文
共 50 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[4]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[5]  
Busche MR, 2016, NAT CHEM, V8, P426, DOI [10.1038/nchem.2470, 10.1038/NCHEM.2470]
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]  
Dong TT, 2018, ENERG ENVIRON SCI, V11, P1197, DOI 10.1039/c7ee03365f
[9]   Extreme Strain Localization and Sliding Friction in Physically Associating Polymer Gels [J].
Erk, Kendra A. ;
Martin, Jeffrey D. ;
Hu, Y. Thomas ;
Shull, Kenneth R. .
LANGMUIR, 2012, 28 (09) :4472-4478
[10]   Shark baselines and the conservation role of remote coral reef ecosystems [J].
Ferretti, Francesco ;
Curnick, David ;
Liu, Keli ;
Romanov, Evgeny V. ;
Block, Barbara A. .
SCIENCE ADVANCES, 2018, 4 (03)