CO2 Deserts: Implications of Existing CO2 Supply Limitations for Carbon Management

被引:38
|
作者
Middleton, Richard S. [1 ]
Clarens, Andres F. [2 ]
Liu, Xiaowei [2 ]
Bielicki, Jeffrey M. [3 ,4 ]
Levine, Jonathan S.
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Virginia, Charlottesville, VA 22904 USA
[3] Ohio State Univ, Columbus, OH 43210 USA
[4] Ohio State Univ, John Glenn Sch Publ Affairs, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
LIFE-CYCLE ASSESSMENT; GREENHOUSE-GAS EMISSIONS; SEQUESTRATION; BIODIESEL; RECOVERY; BIOFUELS; DIOXIDE; IMPACTS; CAPTURE; STORAGE;
D O I
10.1021/es5022685
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies
引用
收藏
页码:11713 / 11720
页数:8
相关论文
共 50 条
  • [21] Influence of carbon nanodots on the Carbonate/CO2/Brine wettability and CO2-Brine interfacial Tension: Implications for CO2 geo-storage
    Sakthivel, Sivabalan
    Yekeen, Nurudeen
    Theravalappil, Rajesh
    Al-Yaseri, Ahmed
    FUEL, 2024, 355
  • [22] Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in Novel Activated Carbon Beads: Preparation, Measurements and Simulation
    Shao, Xiaohong
    Feng, Zhenhe
    Xue, Ruisheng
    Ma, Congcong
    Wang, Wenchuan
    Peng, Xuan
    Cao, Dapeng
    AICHE JOURNAL, 2011, 57 (11) : 3042 - 3051
  • [23] Impact of supercritical CO2 saturation temperature on anthracite microstructures: Implications for CO2 sequestration
    Yang, Yongbo
    Dai, Linchao
    Liu, Xianfeng
    Wang, Zhibao
    Nie, Baisheng
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 388
  • [24] Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2
    Burnside, N. M.
    Naylor, M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 23 : 1 - 11
  • [25] Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon
    Adhikari, Abhijit Krishna
    Lin, Kuen-Song
    CHEMICAL ENGINEERING JOURNAL, 2016, 284 : 1348 - 1360
  • [26] OH and O mediated interaction of CO2 with Ni(110) surface, and its implications on biomimetic CO2 hydration
    Kumari, Saroj
    Deshpande, Parag A.
    CHEMICAL ENGINEERING SCIENCE, 2021, 246
  • [27] Mesoporous carbon supported MgO for CO2 capture and separation of CO2/N2
    Burri, Harshitha
    Anjum, Rumana
    Gurram, Ramesh Babu
    Mitta, Harisekhar
    Mutyala, Suresh
    Jonnalagadda, Madhavi
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (09) : 1482 - 1488
  • [28] CO2 RECYCLING FOR A CARBON RESOURCE
    SANO, H
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1992, 78 (08): : 1275 - 1280
  • [29] Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation
    Park, Jaewoo
    Attia, Nour F.
    Jung, Minji
    Lee, Myoung Eun
    Lee, Kiyoung
    Chung, Jaewoo
    Oh, Hyunchul
    ENERGY, 2018, 158 : 9 - 16
  • [30] Oxygen Supply for Oxycoal CO2 Capture
    Higginbotham, Paul
    White, Vince
    Fogash, Kevin
    Guvelioglu, Galip
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 884 - 891