Disorder-aided pulse stabilization in dissipative synthetic photonic lattices

被引:9
作者
Derevyanko, Stanislav [1 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
LOCALIZATION; TRANSITION;
D O I
10.1038/s41598-019-49259-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a discrete time evolution of light in dissipative and disordered photonic lattice presenting a generalization of two popular non-Hermitian models in mathematical literature: Hatano-Nelson and random clock model and suggest a possible experimental implementation using coupled fiber loops. We show that if the model is treated as non-unitary Floquet operator rather than the effective Hamiltonian the combination of controlled photon loss and static phase disorder leads to pulse stabilization in the ring topology. We have also studied the topological invariant associated with the system and found additional evidence for the absence of Anderson transition.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Non-Hermitian localization in biological networks [J].
Amir, Ariel ;
Hatano, Naomichi ;
Nelson, David R. .
PHYSICAL REVIEW E, 2016, 93 (04)
[2]   Light localization induced by a random imaginary refractive index [J].
Basiri, A. ;
Bromberg, Y. ;
Yamilov, A. ;
Cao, H. ;
Kottos, T. .
PHYSICAL REVIEW A, 2014, 90 (04)
[3]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[4]   Interplay of superradiance and disorder in the Anderson Model [J].
Celardo, G. L. ;
Biella, A. ;
Kaplan, L. ;
Borgonovi, F. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (2-3) :250-260
[5]  
Celardo L., 2014, PHYS REV B, V90
[6]   Anderson localization of a one-dimensional quantum walker [J].
Derevyanko, Stanislav .
SCIENTIFIC REPORTS, 2018, 8
[7]   Lyapunov exponent and density of states of a one-dimensional non-Hermitian Schrodinger equation [J].
Derrida, B ;
Jacobsen, JL ;
Zeitak, R .
JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) :31-55
[8]  
El-Ganainy R, 2018, NAT PHYS, V14, P11, DOI [10.1038/nphys4323, 10.1038/NPHYS4323]
[9]   Non-Hermitian localization and delocalization [J].
Feinberg, J ;
Zee, A .
PHYSICAL REVIEW E, 1999, 59 (06) :6433-6443
[10]   Non-Hermitian photonics based on parity-time symmetry [J].
Feng, Liang ;
El-Ganainy, Ramy ;
Ge, Li .
NATURE PHOTONICS, 2017, 11 (12) :752-762