The periplectic Brauer algebra II: Decomposition multiplicities

被引:14
作者
Coulembier, Kevin [1 ]
Ehrig, Michael [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Periplectic Lie superalgebra; periplectic Brauer algebra; decomposition multiplicities; (skew) Young diagrams; standardly based algebras;
D O I
10.4171/JCA/2-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the Jordan-Holder decomposition multiplicities of projective and cell modules over periplectic Brauer algebras in characteristic zero. These are obtained by developing the combinatorics of certain skew Young diagrams. We also establish a useful relationship with the Kazhdan-Lusztig multiplicities of the periplectic Lie supergroup.
引用
收藏
页码:19 / 46
页数:28
相关论文
共 7 条
[1]  
Balagovic M., ARXIV161008470
[2]  
Coulembier K., ARXIV160906760
[3]   Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra [J].
Cox, Anton ;
De Visscher, Maud .
JOURNAL OF ALGEBRA, 2011, 340 (01) :151-181
[4]   Based algebras and standard bases for quasi-hereditary algebras [J].
Du, J ;
Rui, HB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (08) :3207-3235
[5]   The marked Brauer category [J].
Kujawa, Jonathan R. ;
Tharp, Benjiman C. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 :393-413
[6]  
Martin PP, 2015, T AM MATH SOC, V367, P1797
[7]   Tensor product representations of the lie superalgebra p(n) and their centralizers [J].
Moon, D .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (05) :2095-2140