Chebyshev Polynomials and the Minimal Polynomial of cos(2π/n)

被引:11
作者
Gurtas, Yusuf Z. [1 ]
机构
[1] CUNY Queensborough Community Coll, Bayside, NY 11364 USA
关键词
D O I
10.4169/amer.math.monthly.124.1.74
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimal polynomial of cos( 2 pi/ n) allows one to realize the value of cos( 2 pi/ n) as the root of a polynomial with rational coefficients. These polynomials prove to be instrumental in expressing some relations satisfied by Chebyshev polynomials as a product. In this article a few relations satisfied by Chebyshev polynomials of the first and second kind and the minimal polynomial of cos( 2 pi/ n) are presented. The proof of the main theorem shows how cyclotomic polynomials can be used to link these two kinds of polynomials.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 7 条
[1]  
[Anonymous], 2004, MATH MAG
[2]   THE MINIMAL POLYNOMIAL OF cos(2 pi/n) [J].
Gurtas, Yusuf Z. .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04) :667-682
[3]  
Lehmer D.H, 1933, Am. Math. Mon., V40, P165
[4]  
Mason J.C., 2003, Chebyshev polynomials, DOI 10.1201/9781420036114
[5]   Factorization properties of Chebyshev polynomials [J].
Rayes, MO ;
Trevisan, V ;
Wang, PS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) :1231-1240
[6]  
Rivlin T.J., 2020, Chebyshev Polynomials
[7]   THE MINIMAL POLYNOMIAL OF COS(2-PI/N) [J].
WATKINS, W ;
ZEITLIN, J .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (05) :471-474