Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li4Mn5O12 Coating

被引:480
作者
Zhang, Xu-Dong [1 ,2 ]
Shi, Ji-Lei [1 ,2 ]
Liang, Jia-Yan [1 ,2 ]
Yin, Ya-Xia [1 ,2 ]
Zhang, Jie-Nan [3 ]
Yu, Xi-Qian [3 ]
Guo, Yu-Guo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
cathode materials; electrochemistry; heterostructure; lattice oxygen release; lithium-ion batteries; LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; LAYERED-OXIDE ELECTRODES; STRUCTURAL TRANSFORMATION; RECHARGEABLE BATTERIES; MANGANESE OXIDES; ANIONIC REDOX; PERFORMANCE; CAPACITY; ORIGIN;
D O I
10.1002/adma.201801751
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-rich layered oxides with the capability to realize extraordinary capacity through anodic redox as well as classical cationic redox have spurred extensive attention. However, the oxygen-involving process inevitably leads to instability of the oxygen framework and ultimately lattice oxygen release from the surface, which incurs capacity decline, voltage fading, and poor kinetics. Herein, it is identified that this predicament can be diminished by constructing a spinel Li4Mn5O12 coating, which is inherently stable in the lattice framework to prevent oxygen release of the lithium-rich layered oxides at the deep delithiated state. The controlled KMnO4 oxidation strategy ensures uniform and integrated encapsulation of Li4Mn5O12 with structural compatibility to the layered core. With this layer suppressing oxygen release, the related phase transformation and catalytic side reaction that preferentially start from the surface are consequently hindered, as evidenced by detailed structural evolution during Li+ extraction/insertion. The heterostructure cathode exhibits highly competitive energy-storage properties including capacity retention of 83.1% after 300 cycles at 0.2 C, good voltage stability, and favorable kinetics. These results highlight the essentiality of oxygen framework stability and effectiveness of this spinel Li4Mn5O12 coating strategy in stabilizing the surface of lithium-rich layered oxides against lattice oxygen escaping for designing high-performance cathode materials for high-energy-density lithium-ion batteries.
引用
收藏
页数:8
相关论文
共 42 条
[1]   High-Performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 Heterostructured Cathode Material Coated with a Lithium Borate Oxide Glass Layer [J].
Bian, Xiaofei ;
Fu, Qiang ;
Qiu, Hailong ;
Du, Fei ;
Gao, Yu ;
Zhang, Lijie ;
Zou, Bo ;
Chen, Gang ;
Wei, Yingjin .
CHEMISTRY OF MATERIALS, 2015, 27 (16) :5745-5754
[2]   Role of surface coating on cathode materials for lithium-ion batteries [J].
Chen, Zonghai ;
Qin, Yan ;
Amine, Khalil ;
Sun, Y. -K .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (36) :7606-7612
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries [J].
Cho, Yonghyun ;
Lee, Sanghan ;
Lee, Yongseok ;
Hong, Taeeun ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :821-828
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries [J].
Fu, Fang ;
Yao, Yuze ;
Wang, Haiyan ;
Xu, Gui-Liang ;
Amine, Khalil ;
Sun, Shi-Gang ;
Shao, Minhua .
NANO ENERGY, 2017, 35 :370-378
[7]   Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer [J].
Grenier, Antonin ;
Liu, Hao ;
Wiaderek, Kamila M. ;
Lebens-Higgins, Zachary W. ;
Borkiewicz, Olaf J. ;
Piper, Louis F. J. ;
Chupas, Peter J. ;
Chapman, Karena W. .
CHEMISTRY OF MATERIALS, 2017, 29 (17) :7345-7352
[8]   Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5) [J].
Hy, Sunny ;
Felix, Felix ;
Rick, John ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) :999-1007
[9]   Surface Reconstruction in Li-Rich Layered Oxides of Li-Ion Batteries [J].
Jarvis, Karalee ;
Wang, Chih-Chieh ;
Varela, Maria ;
Unocic, Raymond R. ;
Manthiram, Arumugam ;
Ferreira, Paulo J. .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7668-7674
[10]   Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides [J].
Julien, CM ;
Massot, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 100 (01) :69-78