Linear-time general decoding algorithm for the surface code

被引:31
作者
Darmawan, Andrew S. [1 ]
Poulin, David [2 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[4] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
关键词
Quantum noise;
D O I
10.1103/PhysRevE.97.051302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
[Anonymous], ARXIV160906373
[2]   Machine-learning-assisted correction of correlated qubit errors in a topological code [J].
Baireuther, P. ;
O'Brien, T. E. ;
Tarasinski, B. ;
Beenakker, C. W. J. .
QUANTUM, 2018, 2
[3]   Optimal resources for topological two-dimensional stabilizer codes: Comparative study [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2007, 76 (01)
[4]   Efficient algorithms for maximum likelihood decoding in the surface code [J].
Bravyi, Sergey ;
Suchara, Martin ;
Vargo, Alexander .
PHYSICAL REVIEW A, 2014, 90 (03)
[5]   Quantum Self-Correction in the 3D Cubic Code Model [J].
Bravyi, Sergey ;
Haah, Jeongwan .
PHYSICAL REVIEW LETTERS, 2013, 111 (20)
[6]   Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics [J].
Chamberland, Christopher ;
Iyer, Pavithran ;
Poulin, David .
QUANTUM, 2018, 2
[7]   Hard decoding algorithm for optimizing thresholds under general Markovian noise [J].
Chamberland, Christopher ;
Wallman, Joel ;
Beale, Stefanie ;
Laflamme, Raymond .
PHYSICAL REVIEW A, 2017, 95 (04)
[8]   Tensor-Network Simulations of the Surface Code under Realistic Noise [J].
Darmawan, Andrew S. ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2017, 119 (04)
[9]  
Delfosse N., ARXIV170906218
[10]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505