A lower bound for faithful representations of nilpotent Lie algebras

被引:3
作者
Cagliero, Leandro [1 ]
Rojas, Nadina [2 ]
机构
[1] Univ Nacl Cordoba, CONICET FaMAF, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, FCEFyN, CIEM, RA-5000 Cordoba, Argentina
关键词
nilpotent Lie algebras; Ado's theorem; nilrepresentation; minimal faithful representation;
D O I
10.1080/03081087.2014.985629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite-dimensional nilpotent Lie algebra n, let mu(n) (resp. mu(nil) (n)) be the minimal dimension of V such that n admits a faithful representation (resp. nilrepresentation) on V. In this paper, we present a lower bound for mu(nil)(n) for a p-step nilpotent Lie algebra n over a field of characteristic zero. Our bound is given as the minimum of a quadratically constrained linear optimization problem, it works for arbitrary p and takes into account a given filtration of n. We present some estimates of this minimum which leads to a very explicit lower bound for mu(nil)(n) that involves the dimensions of n and its centre. This bound allows us to obtain mu(n) for some families of nilpotent Lie algebras.
引用
收藏
页码:2135 / 2150
页数:16
相关论文
共 21 条
[1]  
Alvarez A, FAITHFUL RE IN PRESS
[2]  
[Anonymous], 1979, Lie Algebras
[3]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[4]   Representability of lie algebras and lie groups by matrices [J].
Birkhoff, G .
ANNALS OF MATHEMATICS, 1937, 38 :526-532
[5]  
Bourgain J., 2008, Ann. Math. (2), V167, P625, DOI DOI 10.4007/ANNALS.2008.167.625
[6]  
Burde D., 2006, Central European J. Math, V4, P323, DOI [10.2478/s11533-006-0014-9, DOI 10.2478/S11533-006-0014-9]
[7]   Minimal faithful representations of reductive Lie algebras [J].
Burde, Dietrich ;
Moens, Wolfgang .
ARCHIV DER MATHEMATIK, 2007, 89 (06) :513-523
[8]   Faithful Lie algebra modules and quotients of the universal enveloping algebra [J].
Burde, Dietrich ;
Moens, Wolfgang Alexander .
JOURNAL OF ALGEBRA, 2011, 325 (01) :440-460
[9]   Computing faithful representations for nilpotent Lie algebras [J].
Burde, Dietrich ;
Eick, Bettina ;
de Graaf, Willem .
JOURNAL OF ALGEBRA, 2009, 322 (03) :602-612
[10]   FAITHFUL REPRESENTATIONS OF MINIMAL DIMENSION OF CURRENT HEISENBERG LIE ALGEBRAS [J].
Cagliero, Leandro ;
Rojas, Nadina .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (11) :1347-1362