Structural properties of Euclidean rhythms

被引:9
作者
Gomez-Martin, Francisco [2 ]
Taslakian, Perouz [1 ]
Toussaint, Godfried [1 ]
机构
[1] McGill Univ, Sch Comp Sci, CIRMMT, Montreal, PQ H3A 2A7, Canada
[2] Univ Politecn Madrid, Escuela Univ Informat Ctra Valencia, Dept Matemat Aplicada, Madrid 28031, Spain
关键词
Euclidean rhythms; maximally even; GEOMETRY;
D O I
10.1080/17459730902819566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the structure of Euclidean rhythms and show that a Euclidean rhythm is formed of a pattern, called the main pattern, repeated a certain number of times, followed possibly by one extra pattern, the tail pattern. We thoroughly study the recursive nature of Euclidean rhythms when generated by Bjorklund's algorithm, one of the many algorithms that generate Euclidean rhythms. We make connections between Euclidean rhythms and Bezout's theorem. We also prove that the decomposition obtained is minimal.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 18 条
[1]  
BJORKLUND E, 2003, SNSNOTECNTRL99 ASD L
[2]   ALGORITHM FOR COMPUTER CONTROL OF A DIGITAL PLOTTER [J].
BRESENHAM, JE .
IBM SYSTEMS JOURNAL, 1965, 4 (01) :25-30
[3]  
BRUCKSTEIN AM, 1991, VISION GEOMETRY, P1
[4]   Self-similar pitch structures, their duals, and rhythmic analogues [J].
Carey, N ;
Clampitt, D .
PERSPECTIVES OF NEW MUSIC, 1996, 34 (02) :62-87
[5]   MAXIMALLY EVEN SETS [J].
CLOUGH, J ;
DOUTHETT, J .
JOURNAL OF MUSIC THEORY, 1991, 35 (1-2) :93-173
[6]   VARIETY AND MULTIPLICITY IN DIATONIC SYSTEMS [J].
CLOUGH, J ;
MYERSON, G .
JOURNAL OF MUSIC THEORY, 1985, 29 (02) :249-270
[7]  
Cormen T.H., 2001, Introduction To Algorithms, Vsecond
[8]  
DEBRUIJN NG, 1989, INDAG MATH, V51, P385
[9]  
DEBRUIJN NG, 1981, NEDERL AKAD WETENS A, V43, P27
[10]   The distance geometry of music [J].
Demaine, Erik D. ;
Gomez-Martin, Francisco ;
Meijer, Henk ;
Rappaport, David ;
Taslakian, Perouz ;
Toussaint, Godfried T. ;
Winograd, Terry ;
Wood, David R. .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (05) :429-454