A Study on Labeling Network Hostile Behavior with Intelligent Interactive Tools

被引:20
作者
Guerra, Jorge L. [1 ]
Veas, Eduardo [2 ]
Catania, Carlos A. [1 ]
机构
[1] Univ Cuyo, LABSIN, Sch Engn, Mendoza, Argentina
[2] Graz Univ Technol, ISDS, Graz, Austria
来源
2019 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC) | 2019年
关键词
Human-centered computing; Visualization techniques; Heatmap; Labeling; Semi-Supervised learning;
D O I
10.1109/vizsec48167.2019.9161489
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Labeling a real network dataset is specially expensive in computer security, as an expert has to ponder several factors before assigning each label. This paper describes an interactive intelligent system to support the task of identifying hostile behaviors in network logs. The RiskID application uses visualizations to graphically encode features of network connections and promote visual comparison. In the background, two algorithms are used to actively organize connections and predict potential labels: a recommendation algorithm and a semi-supervised learning strategy. These algorithms together with interactive adaptions to the user interface constitute a behavior recommendation. A study is carried out to analyze how the algorithms for recommendation and prediction influence the workflow of labeling a dataset. The results of a study with 16 participants indicate that the behaviour recommendation significantly improves the quality of labels. Analyzing interaction patterns, we identify a more intuitive workflow used when behaviour recommendation is available.
引用
收藏
页数:10
相关论文
共 26 条
  • [1] Abt Sebastian, 2014, 2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS). Proceedings, P40, DOI 10.1109/BADGERS.2014.11
  • [2] Amershi Saleema., 2014, AI Magazine
  • [3] [Anonymous], 2004, NIPS
  • [4] [Anonymous], 2015, CTU 13 DATASET
  • [5] [Anonymous], 2013, MALWARE CAPTURE FACI
  • [6] Beaugnon A., 2012, ILAB INTERACTIVE LAB, V7462, P120, DOI [10.1007/978-3-642-33338-5, DOI 10.1007/978-3-642-33338-5]
  • [7] VIAL: a unified process for visual interactive labeling
    Bernard, Juergen
    Zeppelzauer, Matthias
    Sedlmair, Michael
    Aigner, Wolfgang
    [J]. VISUAL COMPUTER, 2018, 34 (09) : 1189 - 1207
  • [8] Bhuyan M. H., 2015, Int J Netw Secur, V17, P683
  • [9] Automatic network intrusion detection: Current techniques and open issues
    Catania, Carlos A.
    Garcia Garino, Carlos
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2012, 38 (05) : 1062 - 1072
  • [10] Interactive labelling of a multivariate dataset for supervised machine learning using linked visualisations, clustering, and active learning
    Chegini, Mohammad
    Bernard, Juergen
    Berger, Philip
    Sourin, Alexei
    Andrews, Keith
    Schreck, Tobias
    [J]. VISUAL INFORMATICS, 2019, 3 (01) : 9 - 17