Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics

被引:11
|
作者
Kalinov, A. [1 ,2 ]
Osinsky, A., I [1 ]
Matveev, S. A. [3 ,4 ]
Otieno, W. [5 ]
Brilliantov, N., V [1 ,5 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Inst Sci & Technol Austria ISTA, Campus 1, A-3400 Klosterneuburg, Austria
[3] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
[4] Russian Acad Sci, Marchuk Inst Numer Math, Moscow, Russia
[5] Univ Leicester, Leicester, Leics, England
关键词
Coagulation; Aggregation-fragmentation kinetics; Smoluchowski equations; Direct simulation Monte Carlo; Steady oscillations; PARTICLE COAGULATION; STOCHASTIC ALGORITHM; DUST COAGULATION; BREAKAGE; DYNAMICS; EQUATION; DIFFUSION; MODEL;
D O I
10.1016/j.jcp.2022.111439
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We revisit two basic Direct Simulation Monte Carlo Methods to model aggregation kinetics and extend them for aggregation processes with collisional fragmentation (shattering). We test the performance and accuracy of the extended methods and compare their performance with the efficient deterministic finite-difference method applied to the same model. We validate the stochastic methods on the test problems and apply them to verify the existence of oscillating regimes in the aggregation-fragmentation kinetics recently detected in deterministic simulations. We confirm the emergence of steady oscillations of densities in such systems and prove the stability of the oscillations with respect to fluctuations and noise. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
    Gallis, M. A.
    Koehler, T. P.
    Torczynski, J. R.
    Plimpton, S. J.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (04):
  • [32] dsmcFoam plus : An OpenFOAM based direct simulation Monte Carlo solver
    White, C.
    Borg, M. K.
    Scanlon, T. J.
    Longshaw, S. M.
    John, B.
    Emerson, D. R.
    Reese, J. M.
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 : 22 - 43
  • [33] Direct simulation Monte Carlo aerosol dynamics: Coagulation and collisional sampling
    Palaniswaamy, Geethpriya
    Loyalka, Sudarshan K.
    NUCLEAR TECHNOLOGY, 2006, 156 (01) : 29 - 38
  • [34] Monte Carlo Simulation of Effect of Block Sequence on Kinetics of Vesicle Formation of Polymers
    Fan Juan-Juan
    Han Yuan-Yuan
    Jiang Wei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2013, 34 (03): : 621 - 627
  • [35] A Monte Carlo simulation for particle aggregation containing a sol-gel phase transition
    Wei, Jianming
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2016, 78 (02) : 270 - 278
  • [36] Numerical simulation of the blast impact problem using the Direct Simulation Monte Carlo (DSMC) method
    Sharma, A
    Long, LN
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 200 (01) : 211 - 237
  • [37] Simulation of nanowire fragmentation by means of kinetic Monte Carlo approach: 2D case
    Moskovkin, Pavel
    Panshenskov, Mikhail
    Lucas, Stephane
    Solov'yov, Andrey V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (07): : 1456 - 1462
  • [38] Uniformity of deposited film thickness on a uneven surface by direct simulation Monte Carlo
    Hong, LC
    Hsu, CC
    Tsai, DS
    MATERIALS CHEMISTRY AND PHYSICS, 1997, 48 (01) : 82 - 89
  • [39] Velocity-Space Hybridization of Direct Simulation Monte Carlo and a Quasi-Particle Boltzmann Solver
    Oblapenko, Georgii
    Goldstein, David
    Varghese, Philip
    Moore, Christopher
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2021, 35 (04) : 788 - 799
  • [40] Liquid evaporation from nanochannel in the presence of non-condensable gas by direct simulation Monte Carlo
    Li, Ran
    Xia, Guodong
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 399