Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging

被引:2
作者
Yildiz, Orcun [1 ]
Chan, Henry [1 ]
Raghavan, Krishnan [1 ]
Judge, William [2 ]
Cherukara, Mathew J. [1 ]
Balaprakash, Prasanna [1 ]
Sankaranarayanan, Subramanian [1 ]
Peterka, Tom [1 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
来源
2022 IEEE/ACM INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S) | 2022年
关键词
HPC workflows; defect identification; continual learning; catastrophic forgetting;
D O I
10.1109/AI4S56813.2022.00006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray Bragg coherent diffraction imaging (BCDI) is widely used for materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive. Here, we introduce a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data. To automate this process, we compose a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training and inference data as needed based on the accuracy of the defect classifier instead of all training data generated a priori. The results show that our approach improves the accuracy of defect classifiers while using much fewer samples of data.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 30 条
[11]   Deep neural networks in real-time coherent diffraction imaging [J].
Harder, Ross .
IUCRJ, 2021, 8 :1-3
[12]   Atomsk: A tool for manipulating and converting atomic data files [J].
Hirel, Pierre .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 :212-219
[13]   Defect identification in simulated Bragg coherent diffraction imaging by automated AI [J].
Judge, William ;
Chan, Henry ;
Sankaranarayanan, Subramanian ;
Harder, Ross J. ;
Cabana, Jordi ;
Cherukara, Mathew J. .
MRS BULLETIN, 2023, 48 (02) :124-133
[14]   Overcoming catastrophic forgetting in neural networks [J].
Kirkpatricka, James ;
Pascanu, Razvan ;
Rabinowitz, Neil ;
Veness, Joel ;
Desjardins, Guillaume ;
Rusu, Andrei A. ;
Milan, Kieran ;
Quan, John ;
Ramalho, Tiago ;
Grabska-Barwinska, Agnieszka ;
Hassabis, Demis ;
Clopath, Claudia ;
Kumaran, Dharshan ;
Hadsell, Raia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) :3521-3526
[15]  
Krishnan R, 2020, Arxiv, DOI arXiv:2008.02219
[16]  
Kuhlen T., 2011, P 11 EUR C PAR GRAPH
[17]   A convolutional neural network for defect classification in Bragg coherent X-ray diffraction [J].
Lim, Bruce ;
Bellec, Ewen ;
Dupraz, Maxime ;
Leake, Steven ;
Resta, Andrea ;
Coati, Alessandro ;
Sprung, Michael ;
Almog, Ehud ;
Rabkin, Eugen ;
Schulli, Tobias ;
Richard, Marie-Ingrid .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[18]  
van de Ven GM, 2019, Arxiv, DOI [arXiv:1904.07734, DOI 10.48550/ARXIV.1904.07734]
[19]   A unified evaluation of iterative projection algorithms for phase retrieval [J].
Marchesini, S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
[20]  
Paszke A, 2019, ADV NEUR IN, V32