Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging

被引:2
作者
Yildiz, Orcun [1 ]
Chan, Henry [1 ]
Raghavan, Krishnan [1 ]
Judge, William [2 ]
Cherukara, Mathew J. [1 ]
Balaprakash, Prasanna [1 ]
Sankaranarayanan, Subramanian [1 ]
Peterka, Tom [1 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
来源
2022 IEEE/ACM INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S) | 2022年
关键词
HPC workflows; defect identification; continual learning; catastrophic forgetting;
D O I
10.1109/AI4S56813.2022.00006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray Bragg coherent diffraction imaging (BCDI) is widely used for materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive. Here, we introduce a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data. To automate this process, we compose a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training and inference data as needed based on the accuracy of the defect classifier instead of all training data generated a priori. The results show that our approach improves the accuracy of defect classifiers while using much fewer samples of data.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 30 条
  • [11] Deep neural networks in real-time coherent diffraction imaging
    Harder, Ross
    [J]. IUCRJ, 2021, 8 : 1 - 3
  • [12] Atomsk: A tool for manipulating and converting atomic data files
    Hirel, Pierre
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 : 212 - 219
  • [13] Defect identification in simulated Bragg coherent diffraction imaging by automated AI
    Judge, William
    Chan, Henry
    Sankaranarayanan, Subramanian
    Harder, Ross J.
    Cabana, Jordi
    Cherukara, Mathew J.
    [J]. MRS BULLETIN, 2023, 48 (02) : 124 - 133
  • [14] Overcoming catastrophic forgetting in neural networks
    Kirkpatricka, James
    Pascanu, Razvan
    Rabinowitz, Neil
    Veness, Joel
    Desjardins, Guillaume
    Rusu, Andrei A.
    Milan, Kieran
    Quan, John
    Ramalho, Tiago
    Grabska-Barwinska, Agnieszka
    Hassabis, Demis
    Clopath, Claudia
    Kumaran, Dharshan
    Hadsell, Raia
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) : 3521 - 3526
  • [15] Krishnan R, 2020, Arxiv, DOI arXiv:2008.02219
  • [16] Kuhlen T., 2011, P 11 EUR C PAR GRAPH
  • [17] A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
    Lim, Bruce
    Bellec, Ewen
    Dupraz, Maxime
    Leake, Steven
    Resta, Andrea
    Coati, Alessandro
    Sprung, Michael
    Almog, Ehud
    Rabkin, Eugen
    Schulli, Tobias
    Richard, Marie-Ingrid
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [18] van de Ven GM, 2019, Arxiv, DOI arXiv:1904.07734
  • [19] A unified evaluation of iterative projection algorithms for phase retrieval
    Marchesini, S.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
  • [20] Paszke A, 2019, ADV NEUR IN, V32