Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging

被引:2
作者
Yildiz, Orcun [1 ]
Chan, Henry [1 ]
Raghavan, Krishnan [1 ]
Judge, William [2 ]
Cherukara, Mathew J. [1 ]
Balaprakash, Prasanna [1 ]
Sankaranarayanan, Subramanian [1 ]
Peterka, Tom [1 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
来源
2022 IEEE/ACM INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S) | 2022年
关键词
HPC workflows; defect identification; continual learning; catastrophic forgetting;
D O I
10.1109/AI4S56813.2022.00006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray Bragg coherent diffraction imaging (BCDI) is widely used for materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive. Here, we introduce a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data. To automate this process, we compose a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training and inference data as needed based on the accuracy of the defect classifier instead of all training data generated a priori. The results show that our approach improves the accuracy of defect classifiers while using much fewer samples of data.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 30 条
[1]   Toward a Methodology and Framework for Workflow-Driven Team Science [J].
Altintas, Ilkay ;
Purawat, Shweta ;
Crawl, Daniel ;
Singh, Alok ;
Marcus, Kyle .
COMPUTING IN SCIENCE & ENGINEERING, 2019, 21 (04) :37-48
[2]  
[Anonymous], 2016, ACM Transactions on Parallel Computing (TOPC), DOI DOI 10.1145/2987371
[3]  
Ayachit U, 2016, PROCEEDINGS OF ISAV 2016: 2ND WORKSHOP ON IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION, P40, DOI [10.1109/ISAV.2016.13, 10.1109/ISAV.2016.013]
[4]  
Ayachit Utkarsh, 2024, P 1 WORKSH IN SIT IN, DOI [DOI 10.1145/2828612.28286242, 10.1145/2828612]
[5]   Transparent In Situ Data Transformations in ADIOS [J].
Boyuka, David A., II ;
Lakshminarasimhan, Sriram ;
Zou, Xiaocheng ;
Gong, Zhenhuan ;
Jenkins, John ;
Schendel, Eric R. ;
Podhorszki, Norbert ;
Liu, Qing ;
Klasky, Scott ;
Samatova, Nagiza F. .
2014 14TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2014, :256-266
[6]   Rapid 3D nanoscale coherent imaging via physics-aware deep learning [J].
Chan, Henry ;
Nashed, Youssef S. G. ;
Kandel, Saugat ;
Hruszkewycz, Stephan O. ;
Sankaranarayanan, Subramanian K. R. S. ;
Harder, Ross J. ;
Cherukara, Mathew J. .
APPLIED PHYSICS REVIEWS, 2021, 8 (02)
[7]   Real-time coherent diffraction inversion using deep generative networks [J].
Cherukara, Mathew J. ;
Nashed, Youssef S. G. ;
Harder, Ross J. .
SCIENTIFIC REPORTS, 2018, 8
[8]   Workflows and e-Science: An overview of workflow system features and capabilities [J].
Deelman, Ewa ;
Gannon, Dennis ;
Shields, Matthew ;
Taylor, Ian .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2009, 25 (05) :528-540
[9]   PyNX: high-performance computing toolkit for coherent X-ray imaging based on operators [J].
Favre-Nicolin, Vincent ;
Girard, Gaetan ;
Leake, Steven ;
Carnis, Jerome ;
Chushkin, Yuriy ;
Kieffer, Jerome ;
Paleo, Pierre ;
Richard, Marie-Ingrid .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 (53) :1404-1413
[10]   Fast computation of scattering maps of nanostructures using graphical processing units [J].
Favre-Nicolin, Vincent ;
Coraux, Johann ;
Richard, Marie-Ingrid ;
Renevier, Hubert .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2011, 44 :635-640