Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging

被引:2
作者
Yildiz, Orcun [1 ]
Chan, Henry [1 ]
Raghavan, Krishnan [1 ]
Judge, William [2 ]
Cherukara, Mathew J. [1 ]
Balaprakash, Prasanna [1 ]
Sankaranarayanan, Subramanian [1 ]
Peterka, Tom [1 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
来源
2022 IEEE/ACM INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S) | 2022年
关键词
HPC workflows; defect identification; continual learning; catastrophic forgetting;
D O I
10.1109/AI4S56813.2022.00006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray Bragg coherent diffraction imaging (BCDI) is widely used for materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive. Here, we introduce a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data. To automate this process, we compose a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training and inference data as needed based on the accuracy of the defect classifier instead of all training data generated a priori. The results show that our approach improves the accuracy of defect classifiers while using much fewer samples of data.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 30 条
  • [1] Toward a Methodology and Framework for Workflow-Driven Team Science
    Altintas, Ilkay
    Purawat, Shweta
    Crawl, Daniel
    Singh, Alok
    Marcus, Kyle
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2019, 21 (04) : 37 - 48
  • [2] Ayachit U., 2015, P 1 WORKSHOP IN SITU, P25, DOI 10.1145/2828612.2828624
  • [3] Ayachit U, 2016, PROCEEDINGS OF ISAV 2016: 2ND WORKSHOP ON IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION, P40, DOI [10.1109/ISAV.2016.13, 10.1109/ISAV.2016.013]
  • [4] Transparent In Situ Data Transformations in ADIOS
    Boyuka, David A., II
    Lakshminarasimhan, Sriram
    Zou, Xiaocheng
    Gong, Zhenhuan
    Jenkins, John
    Schendel, Eric R.
    Podhorszki, Norbert
    Liu, Qing
    Klasky, Scott
    Samatova, Nagiza F.
    [J]. 2014 14TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2014, : 256 - 266
  • [5] Rapid 3D nanoscale coherent imaging via physics-aware deep learning
    Chan, Henry
    Nashed, Youssef S. G.
    Kandel, Saugat
    Hruszkewycz, Stephan O.
    Sankaranarayanan, Subramanian K. R. S.
    Harder, Ross J.
    Cherukara, Mathew J.
    [J]. APPLIED PHYSICS REVIEWS, 2021, 8 (02)
  • [6] Real-time coherent diffraction inversion using deep generative networks
    Cherukara, Mathew J.
    Nashed, Youssef S. G.
    Harder, Ross J.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [7] Workflows and e-Science: An overview of workflow system features and capabilities
    Deelman, Ewa
    Gannon, Dennis
    Shields, Matthew
    Taylor, Ian
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2009, 25 (05): : 528 - 540
  • [8] Dorier M., 2016, ACM TRANS PARALLEL C, V3, P15, DOI DOI 10.1145/2987371
  • [9] PyNX: high-performance computing toolkit for coherent X-ray imaging based on operators
    Favre-Nicolin, Vincent
    Girard, Gaetan
    Leake, Steven
    Carnis, Jerome
    Chushkin, Yuriy
    Kieffer, Jerome
    Paleo, Pierre
    Richard, Marie-Ingrid
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 (53): : 1404 - 1413
  • [10] Fast computation of scattering maps of nanostructures using graphical processing units
    Favre-Nicolin, Vincent
    Coraux, Johann
    Richard, Marie-Ingrid
    Renevier, Hubert
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2011, 44 : 635 - 640