A De-raining semantic segmentation network for real-time foreground segmentation

被引:7
作者
Wang, Fanyi [1 ]
Zhang, Yihui [2 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Henan Univ Sci & Technol, Sch Mechatron Engn, 263 Kaiyuan Ave, Luoyang, Peoples R China
关键词
Real-time; Rainy environments; Foreground segmentation; Encoder-decoder; Lightweight network; IMAGE SEGMENTATION; STREAM;
D O I
10.1007/s11554-020-01042-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few researches have been proposed specifically for real-time semantic segmentation in rainy environments. However, the demand in this area is huge and it is challenging for lightweight networks. Therefore, this paper proposes a lightweight network which is specially designed for the foreground segmentation in rainy environments, named De-raining Semantic Segmentation Network (DRSNet). By analyzing the characteristics of raindrops, the MultiScaleSE Block is targetedly designed to encode the input image, it uses multi-scale dilated convolutions to increase the receptive field, and SE attention mechanism to learn the weights of each channels. To combine semantic information between different encoder and decoder layers, it is proposed to use Asymmetric Skip, that is, the higher semantic layer of encoder employs bilinear interpolation and the output passes through pointwise convolution, then added element-wise to the lower semantic layer of the decoder. According to the control experiments, the performances of MultiScaleSE Block and Asymmetric Skip compared with SEResNet18 and Symmetric Skip respectively are improved to a certain degree on the Foreground Accuracy index. The parameters and the floating point of operations (FLOPs) of DRSNet are only 0.54M and 0.20GFLOPs separately. The state-of-the-art results and real-time performances are achieved on both the UESTC all-day Scenery add rain (UAS-add-rain) and the Baidu People Segmentation add rain (BPS-add-rain) benchmarks with the input sizes of 192*128, 384*256 and 768*512. The speed of DRSNet exceeds all the networks within 1GFLOPs, and Foreground Accuracy index is also the best among the similar magnitude networks on both benchmarks.
引用
收藏
页码:873 / 887
页数:15
相关论文
共 52 条
  • [1] [Anonymous], 2017, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2017.183
  • [2] [Anonymous], 2018, CGNET LIGHT WEIGHT C
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images
    Bendaoudi, Hamza
    Cheriet, Farida
    Manraj, Ashley
    Ben Tahar, Houssem
    Langlois, J. M. Pierre
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (01) : 31 - 42
  • [5] The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
    Berman, Maxim
    Triki, Amal Rannen
    Blaschko, Matthew B.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4413 - 4421
  • [6] Segmentation and Recognition Using Structure from Motion Point Clouds
    Brostow, Gabriel J.
    Shotton, Jamie
    Fauqueur, Julien
    Cipolla, Roberto
    [J]. COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 44 - +
  • [7] DehazeNet: An End-to-End System for Single Image Haze Removal
    Cai, Bolun
    Xu, Xiangmin
    Jia, Kui
    Qing, Chunmei
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5187 - 5198
  • [8] Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
  • [9] CHEN L. C., 2015, 3 INT C LEARN REPR I, DOI [10.48550/arXiv.1412.7062, DOI 10.48550/ARXIV.1412.7062]
  • [10] CaMap: Camera-based Map Manipulation on Mobile Devices
    Chen, Liang
    Chen, Dongyi
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,