The fundamental matrix of singularly perturbed Markov chains

被引:13
作者
Avrachenkov, KE [1 ]
Lasserre, JB
机构
[1] Univ S Australia, Sch Math, The Levels, SA 5095, Australia
[2] CNRS, LAAS, F-75700 Paris, France
关键词
Markov chains; fundamental matrix; singular perturbation;
D O I
10.1017/S0001867800009368
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a singularly perturbed (finite state) Markov chain and provide a complete characterization of the fundamental matrix. In particular, we obtain a formula for the regular part simpler than a previous formula obtained by Schweitzer, and the singular part is obtained via a reduction process similar to Delebecque's reduction for the stationary distribution. In contrast to previous approaches, one works with aggregate Markov chains of much smaller dimension than the original chain, an essential feature for practical computation. An application to mean first-passage times is also presented.
引用
收藏
页码:679 / 697
页数:19
相关论文
共 31 条
[1]   ALGORITHMS FOR SINGULARLY PERTURBED LIMITING AVERAGE MARKOV CONTROL-PROBLEMS [J].
ABBAD, M ;
FILAR, JA ;
BIELECKI, TR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1421-1425
[2]  
[Anonymous], LINEAR ALGEBRA APPL, DOI DOI 10.1016/0024-3795(71)90004-8
[3]  
Baumgartel H., 1985, ANAL PERTURBATION TH
[4]  
BIELECKI D, 1991, ANN OPER RES, V28, P153
[5]  
CHEN M, 1992, RECENT ADV GLOBAL OP, P32
[6]   HIERARCHICAL AGGREGATION OF SINGULARLY PERTURBED FINITE STATE MARKOV PROCESSES. [J].
Coderch, M. ;
Willsky, A.S. ;
Sastry, S.S. ;
Castanon, D.A. .
Stochastics, 1983, 8 (04) :259-289
[7]  
Courtois P. J., 1976, Stochastic Processes & their Applications, V4, P283, DOI 10.1016/0304-4149(76)90016-8
[8]   OPTIMAL-CONTROL OF MARKOV-CHAINS ADMITTING STRONG AND WEAK-INTERACTIONS [J].
DELEBECQUE, F ;
QUADRAT, JP .
AUTOMATICA, 1981, 17 (02) :281-296
[9]  
DELEBECQUE F, 1983, SIAM J APPL MATH, V48, P325
[10]  
FILAR JA, 1996, HAMILTONIAN CYCLE PR