A Machine Learning Approach towards Automatic Water Quality Monitoring

被引:5
|
作者
Bansal, Sandeep [1 ]
Geetha, G. [2 ]
机构
[1] Lovely Profess Univ, Dept Elect & Commun Engn, Phagwara, India
[2] Lovely Profess Univ, Div Res & Dev, Phagwara, India
关键词
machine learning; water quality index; contamination; water quality standards; INDEX;
D O I
10.3103/S1063455X20050045
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Increasing rate of water pollution and consequently waterborne diseases are the engrossing evidence towards danger to living organisms. It becomes a great challenge these days to preserve our flora and fauna by controlling various unexpected pollution activities. Although the invention of many schemes and programmes regarding water purification has done a tremendous job, but still there is something that has been lagging. With increase in population, industrialization and global warming situation is getting worse day by day. It becomes very difficult to get safe drinking water and appropriate quality water for other domestic usage and agriculture purpose. Major reasons for water pollution include undesirable increase in impurities. These may cause eutrophication of the water body, change in taste, discolouration and odour of water, water borne diseases, increase in water toxic nature etc. For water to be serviceable it should be aesthetically acceptable, chemically safe, bacteria free; organic substances and radioactive elements should be absent. So, there is an urgent need to look into this situation and take the corrective and necessary actions to overcome this situation. The government is paying an attention to this problem and finding the ways to control the situation. However, major areas are not developed to the point and water quality estimation is totally dependent upon sampling at location and testing in laboratories. Manual sampling and measurements are prone to human errors and these techniques may create ambiguities in predicted output. In this paper we have presented Machine Learning (ML) approach for calculating the Water Quality Index (WQI) and classification of water quality to estimate water characteristics for usage. For analysis, decision tree method is used to estimate water quality information. The standard values of parameters are selected as per guidelines provided by World Health organization (WHO). Results calculated using ML techniques showed prominent accuracy over traditional methods. Accuracy achieved is also significant, i.e. 98 %. Likewise, projection of gathered data was done utilizing web interface and web app to alert the authorities about contamination.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 50 条
  • [21] Towards Predictive Water Quality: Synergies Between Machine Learning and Internet of Things
    Zrouri, Amira
    El Farissi, Ilhame
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 152 - 159
  • [22] Prediction of estuarine water quality using interpretable machine learning approach
    Wang, Shuo
    Peng, Hui
    Liang, Shengkang
    JOURNAL OF HYDROLOGY, 2022, 605
  • [23] Integration of Machine Learning and Remote Sensing for Water Quality Monitoring and Prediction: A Review
    Mohan, Shashank
    Kumar, Brajesh
    Nejadhashemi, A. Pouyan
    SUSTAINABILITY, 2025, 17 (03)
  • [24] Quality Monitoring of Abu Dhabi Drinking Water Using Machine Learning Classifiers
    Hasan, Ali N.
    Alhammadi, Khawla M.
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 1 - 6
  • [25] An Approach to Forecast Quality of Water Effectively Using Machine Learning Algorithms
    Nambiar, P. V. Manjusha
    Urkude, Giridhar
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2025, 18 (02) : 161 - 175
  • [26] Water Quality Management Using Hybrid Machine Learning and Data Mining Algorithms: An Indexing Approach
    Aslam, Bilal
    Maqsoom, Ahsen
    Cheema, Ali Hassan
    Ullah, Fahim
    Alharbi, Abdullah
    Imran, Muhammad
    IEEE ACCESS, 2022, 10 : 119692 - 119705
  • [27] Secure water quality prediction system using machine learning and blockchain technologies
    Jenifel, M. Geetha
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 350
  • [28] A Machine Learning-based Approach for Automatic Grading and Quality Inspection of Indian Mangoes
    Bagchi, Sourav
    Aditya, Janumpally Varun
    Kumari, Sneha
    Dhanraj, Malla
    Jenamani, Mamata
    2023 IEEE 2ND INDUSTRIAL ELECTRONICS SOCIETY ANNUAL ON-LINE CONFERENCE, ONCON, 2023,
  • [29] Automatic cruise system for water quality monitoring
    Zhu, Chengyun
    Liu, Xingqiao
    Chen, Hailei
    Tian, Xiang
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2018, 11 (04) : 244 - 250
  • [30] Enhancing water quality prediction: a machine learning approach across diverse water environments
    Peerzade, Sabanaz
    Kamat, Pooja
    WATER QUALITY RESEARCH JOURNAL, 2025, 60 (01) : 298 - 317