On reducible monodromy representations of some generalized Lame equation

被引:1
作者
Chen, Zhijie [1 ]
Kuo, Ting-Jung [2 ]
Lin, Chang-Shou [3 ]
Takemura, Kouichi [4 ,5 ]
机构
[1] Yau Math Sci Ctr, Dept Math Sci, Beijing 100084, Peoples R China
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[3] Natl Taiwan Univ, TIMS, CASTS, Taipei 10617, Taiwan
[4] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[5] Chuo Univ, Dept Math, Fac Sci & Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
基金
日本学术振兴会;
关键词
6TH PAINLEVE-EQUATION;
D O I
10.1007/s00209-017-1906-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we compute the explicit formula of the monodromy data for a generalized Lam, equation when its monodromy is reducible but not completely reducible. We also solve the corresponding Riemann-Hilbert problem.
引用
收藏
页码:679 / 688
页数:10
相关论文
共 10 条
[1]  
Babich M. V., 1997, Z251997 NT
[2]  
Chen Z., 2016, ARXIV 1703 05521V1
[3]  
Chen Z.-Q., 2016, PREPRINT
[4]   Hamiltonian system for the elliptic form of Painleve VI equation [J].
Chen, Zhijie ;
Kuo, Ting-Jung ;
Lin, Chang-Shou .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (03) :546-581
[5]  
HITCHIN NJ, 1995, J DIFFER GEOM, V42, P30
[6]  
Iwasaki K., 1991, GAUSS PAINLEVE MOD E, VE16
[7]   Algebraic solutions of the sixth Painleve equation [J].
Lisovyy, Oleg ;
Tykhyy, Yuriy .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 85 :124-163
[8]  
Manin YI, 1998, AM MATH SOC TRANS 2, V186, P131
[9]  
Okamoto K., STUDIES PAINLEVE EQU, VI
[10]   The Hermite-Krichever Ansatz for Fuchsian equations with applications to the sixth Painleve equation and to finite-gap potentials [J].
Takemura, Kouichi .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (01) :149-194