Crystal Growth and Characterization of the Narrow-Band-Gap Semiconductors OsPn2 (Pn = P, As, Sb)

被引:18
作者
Bugaris, Daniel E. [1 ]
Malliakas, Christos D. [1 ,2 ]
Shoemaker, Daniel P. [1 ]
Do, Dat T. [3 ]
Chung, Duck Young [1 ]
Mahanti, Subhendra D. [3 ]
Kanatzidis, Mercouri G. [1 ,2 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
关键词
TOTAL-ENERGY CALCULATIONS; ELECTRICAL-PROPERTIES; SEEBECK COEFFICIENT; STRUCTURAL DATA; CHALCOGENIDES; PHOSPHIDES; RUP2;
D O I
10.1021/ic501733z
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Using metal fluxes, crystals of the binary osmium dipnictides OsPn(2) (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn(6) octahedra, as well as [Pn(2)(-4)] anions. Raman spectroscopy shows the presence of PP single bonds, consistent with the presence of [Pn(2)(-4)] anions and formally Os4+ cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2 and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn(2) dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a PnPn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.
引用
收藏
页码:9959 / 9968
页数:10
相关论文
共 58 条
[41]  
Nakamoto K., 1986, INFRARED RAMAN SPECT
[42]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[43]   Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2 -: art. no. 155205 [J].
Petrovic, C ;
Kim, JW ;
Bud'ko, SL ;
Goldman, AI ;
Canfield, PC ;
Choe, W ;
Miller, GJ .
PHYSICAL REVIEW B, 2003, 67 (15)
[44]   Kondo insulator description of spin state transition in FeSb2 -: art. no. 045103 [J].
Petrovic, C ;
Lee, Y ;
Vogt, T ;
Lazarov, ND ;
Bud'ko, SL ;
Canfield, PC .
PHYSICAL REVIEW B, 2005, 72 (04)
[45]   Synthesis, magnetic, transport, and thermodynamic investigation of CeCo(Sb, Sn)3 [J].
Phelan, W. Adam ;
Nguyen, Giang V. ;
DiTusa, J. F. ;
Chan, Julia Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 523 :176-181
[46]  
Ramdohr P., 1955, NEUES JB MINER MONAT, V6, P133
[47]   NBSB2 [J].
REHR, A ;
KAUZLARICH, SM .
ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1994, 50 :1177-1178
[48]   Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2 [J].
Rotter, Marianne ;
Tegel, Marcus ;
Johrendt, Dirk .
PHYSICAL REVIEW LETTERS, 2008, 101 (10)
[49]   PHOSPHIDES OF THE PLATINUM METALS [J].
RUNDQVIST, S .
NATURE, 1960, 185 (4705) :31-32
[50]  
Schnockel H, 1995, INFRARED RAMAN SPECT