Aligned CuO nanorod arrays: fabrication and anisotropic ferromagnetism

被引:9
作者
Liu, Liqing [1 ,2 ]
Hong, Kunquan [1 ,2 ]
Ge, Xing [1 ,2 ]
Xu, Mingxiang [1 ,2 ]
机构
[1] Southeast Univ, Dept Phys, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Key Lab MEMS, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2014年 / 115卷 / 04期
关键词
ROOM-TEMPERATURE FERROMAGNETISM; HYDROTHERMAL METHOD; ZNO NANOWIRES; NANOSTRUCTURES; OXIDE;
D O I
10.1007/s00339-013-7958-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Copper oxide (CuO) is a p-type semiconductor with a band gap of 1.2 eV, which is well known in high-temperature superconductor and antiferromagnetic (AFM) materials through Cu-O-Cu super-exchange interaction. In this paper, we report the strong anisotropic ferromagnetism (FM) in aligned CuO nanorod arrays synthesized by a microwave-assisted hydrothermal method. The transmission electron microscopy (TEM) image shows that the CuO nanorod consists of a large number of smaller nanorods with almost the same growth direction. The X-ray diffraction (XRD) pattern indicates that the CuO nanorods are well crystallized with highly preferred orientation of the [020] direction. These CuO nanorod arrays show room-temperature ferromagnetism, with strong magnetic anisotropy when the magnetic field is applied perpendicular or parallel to the rod axis. This phenomenon of room-temperature ferromagnetism in those aligned CuO nanorods might originate from uncompensated surface spins and shape anisotropy of the nanorods.
引用
收藏
页码:1147 / 1150
页数:4
相关论文
共 28 条
[21]   Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J].
Poizot, P ;
Laruelle, S ;
Grugeon, S ;
Dupont, L ;
Tarascon, JM .
NATURE, 2000, 407 (6803) :496-499
[22]   Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles [J].
Punnoose, A ;
Magnone, H ;
Seehra, MS ;
Bonevich, J .
PHYSICAL REVIEW B, 2001, 64 (17)
[23]   Room-temperature ferromagnetism in CuO sol-gel powders and films [J].
Qin, Hongwei ;
Zhang, Zhongli ;
Liu, Xing ;
Zhang, Yongjia ;
Hu, Jifan .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (14) :1994-1998
[24]   Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity [J].
Reitz, JB ;
Solomon, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (44) :11467-11478
[25]   From nanoparticle chains to nanorods: control of ZnO nanostructures by laser ablation [J].
Waller, Gordon Henry ;
Du, Xi-Wen .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (07)
[26]   Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method [J].
Xiao, Hong-Mei ;
Zhu, Lu-Ping ;
Liu, Xian-Ming ;
Fu, Shao-Yun .
SOLID STATE COMMUNICATIONS, 2007, 141 (08) :431-435
[27]   Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation [J].
Yan, Hongwei ;
Hou, Jianbo ;
Fu, Zhengping ;
Yang, Beifang ;
Yang, Pinghua ;
Liu, Kaipeng ;
Wen, Meiwang ;
Chen, Youjun ;
Fu, Shengquan ;
Li, Fanqing .
MATERIALS RESEARCH BULLETIN, 2009, 44 (10) :1954-1958
[28]   NEUTRON-SCATTERING STUDIES OF THE MAGNETIC-STRUCTURE OF CUPRIC OXIDE [J].
YANG, BX ;
TRANQUADA, JM ;
SHIRANE, G .
PHYSICAL REVIEW B, 1988, 38 (01) :174-178