Shrinkage estimation in lognormal regression model for censored data

被引:8
作者
Hossain, Shakhawat [1 ]
Howlader, Hatem A. [1 ]
机构
[1] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic distributional bias and risk; adaptive LASSO; likelihood ratio test; lognormal regression; Monte Carlo simulation; shrinkage estimators; PROPORTIONAL HAZARDS MODEL; VARIABLE SELECTION; ADAPTIVE LASSO;
D O I
10.1080/02664763.2016.1168365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce in this paper, the shrinkage estimation method in the lognormal regression model for censored data involving many predictors, some of which may not have any influence on the response of interest. We develop the asymptotic properties of the shrinkage estimators (SEs) using the notion of asymptotic distributional biases and risks. We show that if the shrinkage dimension exceeds two, the asymptotic risk of the SEs is strictly less than the corresponding classical estimators. Furthermore, we study the penalty (LASSO and adaptive LASSO) estimation methods and compare their relative performance with the SEs. A simulation study for various combinations of the inactive predictors and censoring percentages shows that the SEs perform better than the penalty estimators in certain parts of the parameter space, especially when there are many inactive predictors in the model. It also shows that the shrinkage and penalty estimators outperform the classical estimators. A real-life data example using Worcester heart attack study is used to illustrate the performance of the suggested estimators.
引用
收藏
页码:162 / 180
页数:19
相关论文
共 25 条
[1]   Shrinkage, pretest and absolute penalty estimators in partially linear models [J].
Ahmed, S. Ejaz ;
Doksum, Kjell A. ;
Hossain, S. ;
You, Jinhong .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (04) :435-454
[2]   LASSO and shrinkage estimation in Weibull censored regression models [J].
Ahmed, S. Ejaz ;
Hossain, Shakhawat ;
Doksum, Kjell A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) :1273-1284
[3]   Shrinkage estimation in general linear models [J].
An, Lihua ;
Nkurunziza, Severien ;
Fung, Karen Y. ;
Krewski, Daniel ;
Luginaah, Isaac .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (07) :2537-2549
[4]  
[Anonymous], 1993, An introduction to the bootstrap
[5]  
[Anonymous], 1988, Lognormal Distributions: Theory and Applications
[6]  
[Anonymous], 1993, Continuous Univariate Distributions, DOI DOI 10.1016/0167-9473(96)90015-8
[7]  
[Anonymous], 2000, Statistical Distributions
[8]  
Fan JQ, 2002, ANN STAT, V30, P74
[9]  
Hosmer DW., 2008, APPL SURVIVAL ANAL R
[10]   Regularized estimation in the accelerated failure time model with high-dimensional covariates [J].
Huang, Jian ;
Ma, Shuangge ;
Xie, Huiliang .
BIOMETRICS, 2006, 62 (03) :813-820