Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film

被引:7
作者
Florya, I. N. [1 ]
Korneeva, Yu. P. [1 ,2 ]
Mikhailov, M. Yu. [3 ]
Devizenko, A. Yu. [4 ]
Korneev, A. A. [1 ,5 ]
Goltsman, G. N. [1 ,5 ]
机构
[1] Moscow State Pedag Univ, Ul Malaya Pirogovskaya 1,Str 1, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Microstruct Phys, Nizhnii Novgorod 603950, Russia
[3] Natl Acad Sconces Ukraine, BI Verkin Inst Low Temp Phys & Engn, Pr Nauki 47, UA-61103 Kharkov, Ukraine
[4] Natl Tech Univ, Kharkov Polytech Inst, Ul Kirpicheva 2, UA-61002 Kharkov, Ukraine
[5] Natl Res Univ, Higher Sch Econ, AN Tikhonov Moscow Inst Elect & Math, Ul Myasnitskaya 20, Moscow 101000, Russia
关键词
Amorphous silicon - Avalanche photodiodes - Photons - Silicides - Quantum optics;
D O I
10.1063/1.5024539
中图分类号
O59 [应用物理学];
学科分类号
摘要
Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of similar to 0.5-0.6 times the critical current of the detector. Published by AIP Publishing.
引用
收藏
页码:221 / 225
页数:5
相关论文
共 11 条
[1]   A cascade switching superconducting single photon detector [J].
Ejrnaes, M. ;
Cristiano, R. ;
Quaranta, O. ;
Pagano, S. ;
Gaggero, A. ;
Mattioli, F. ;
Leoni, R. ;
Voronov, B. ;
Gol'tsman, G. .
APPLIED PHYSICS LETTERS, 2007, 91 (26)
[2]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[3]   LOCALIZATION AND INTERACTION EFFECTS IN ULTRATHIN AMORPHOUS SUPERCONDUCTING FILMS [J].
GRAYBEAL, JM ;
BEASLEY, MR .
PHYSICAL REVIEW B, 1984, 29 (07) :4167-4169
[4]  
Marsili F, 2013, NAT PHOTONICS, V7, P210, DOI [10.1038/NPHOTON.2013.13, 10.1038/nphoton.2013.13]
[5]   Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires [J].
Marsili, Francesco ;
Najafi, Faraz ;
Dauler, Eric ;
Bellei, Francesco ;
Hu, Xiaolong ;
Csete, Maria ;
Molnar, Richard J. ;
Berggren, Karl K. .
NANO LETTERS, 2011, 11 (05) :2048-2053
[6]   Electrothermal simulation of superconducting nanowire avalanche photodetectors [J].
Marsili, Francesco ;
Najafi, Faraz ;
Herder, Charles ;
Berggren, Karl K. .
APPLIED PHYSICS LETTERS, 2011, 98 (09)
[7]  
Mikhailov M. Yu., 1999, FIZ NIZK TEMP, V25, P850
[8]   Superconducting nanowire single-photon detectors: physics and applications [J].
Natarajan, Chandra M. ;
Tanner, Michael G. ;
Hadfield, Robert H. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2012, 25 (06)
[9]   CRITICAL FIELDS OF W/SI MULTILAYERS [J].
ROSSEEL, E ;
BAERT, M ;
TEMST, K ;
POTTER, C ;
MOSHCHALKOV, VV ;
BRUYNSERAEDE, Y ;
LOBOTKA, P ;
VAVRA, I ;
SENDERAK, R ;
JERGEL, M .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 225 (3-4) :262-268
[10]   High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors [J].
Salim, A. Jafari ;
Eftekharian, A. ;
Majedi, A. Hamed .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)