Trash to Treasure: From Harmful Algal Blooms to High-Performance Electrodes for Sodium-Ion Batteries

被引:99
|
作者
Meng, Xinghua [1 ]
Savage, Phillip E. [2 ]
Deng, Da [1 ]
机构
[1] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
BLUE-GREEN ALGAE; LITHIUM-ION; HARD-CARBON; ANODE MATERIALS; INSERTION; TEMPERATURE; CAPACITY; NA; INTERCALATION; GRAPHITE;
D O I
10.1021/acs.est.5b03882
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Harmful algal blooms (HABs) are frequently reported around the globe. HABs are typically caused by the so-called blue-green algae in eutrophic waters. These fast-growing HABs could be a good source for biomass. Unlike terrestrial plants, they need no land or soil. If HABs could be harvested on a large scale, it could not only possible to mitigate the issue of HABs but also provide a source of biomass. Herein, we demonstrate a facile procedure for converting the HABs into a promising high-performance negative-electrode material for sodium-ion batteries (SIBs). The carbon material derived from blue-green algae demonstrated promising electro-chemical performance in reversible sodium storage. The algae used in this work was collected directly from Lake Erie during the algal blooms that affected 500 000 residents in Toledo in 2014. The carbon, derived from the freshly collected HABs by calcination in argon without any additional purification process, delivered a highly stable reversible specific capacity (similar to 230 mAh/g at a testing current of 20 mA/g) with nearly 100% Columbic efficiency in sodium storage. Impressive rate performance was achieved with a capacity of similar to 135 mAh/g even after the testing current was increased fivefold. This proof of concept provides a promising route for mitigating the issue of HABs as "trash" and for generating high-capacity, low-cost electrodes for SIBs as "treasure".
引用
收藏
页码:12543 / 12550
页数:8
相关论文
共 50 条
  • [41] A high-performance layered Cr-Based cathode for sodium-ion batteries
    Xi, Kaiying
    Chu, Shufen
    Zhang, Xiaoyu
    Zhang, Xueping
    Zhang, Haoyang
    Xu, Hang
    Bian, Jingjing
    Fang, Tiancheng
    Guo, Shaohua
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NANO ENERGY, 2020, 67 (67)
  • [42] Challenges and Strategies toward Manganese Hexacyanoferrate for High-Performance Sodium-Ion Batteries
    Zhou, Zhiming
    Qian, Yudan
    Chen, Xiaomin
    Chen, Jian
    Zhou, Xunzhu
    Kuang, Wenxi
    Shi, Xiaoyan
    Wu, Xingqiao
    Li, Lin
    Wang, Jiazhao
    Chou, Shulei
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (39)
  • [43] Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries
    Zhao, Xin
    Vail, Sean A.
    Lu, Yuhao
    Song, Jie
    Pan, Wei
    Evans, David R.
    Lee, Jong-Jan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) : 13871 - 13878
  • [44] Polymer Electrode Materials for High-Performance Lithium/Sodium-Ion Batteries: A Review
    Cao, Xiaoyu
    Liu, Jingbo
    Zhu, Limin
    Xie, Lingling
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [45] A porous biomass-derived anode for high-performance sodium-ion batteries
    Zhu, Youyu
    Chen, Mingming
    Li, Qi
    Yuan, Chao
    Wang, Chengyang
    CARBON, 2018, 129 : 695 - 701
  • [46] High-Performance Sodium-Ion Batteries with Graphene: An Overview of Recent Developments and Design
    Kumar, Sachin Sharma Ashok
    Badawi, M. Nujud
    Liew, J.
    Prasankumar, Thibeorchews
    Ramesh, K.
    Ramesh, S.
    Ramesh, S.
    Tiong, S. K.
    CHEMSUSCHEM, 2025, 18 (02)
  • [47] Quinoid Conductive Polymer for High-Performance Lithium- and Sodium-Ion Batteries
    Duan, Ruomeng
    Liu, Zhihong
    Wu, Zehua
    Baumgarten, Martin
    Li, Chen
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09): : 8179 - 8183
  • [48] A self-buffering structure for application in high-performance sodium-ion batteries
    Liu, Zhiming
    Yue, Chuang
    Chen, Chaoji
    Xiang, Juan
    Hu, Fang
    Lee, Dongsoo
    Shin, Donghyeok
    Sun, Seho
    Hu, Liangbing
    Song, Taeseup
    ENERGY STORAGE MATERIALS, 2018, 15 : 242 - 248
  • [49] SbPS4: A novel anode for high-performance sodium-ion batteries
    Miao Yang
    Zhonghui Sun
    Ping Nie
    Haiyue Yu
    Chende Zhao
    Mengxuan Yu
    Zhongzhen Luo
    Hongbo Geng
    Xinglong Wu
    ChineseChemicalLetters, 2022, 33 (01) : 470 - 474
  • [50] A Configuration Entropy Enabled High-Performance Polyanionic Cathode for Sodium-Ion Batteries
    Li, Meng
    Sun, Chen
    Yuan, Xuanyi
    Li, Yang
    Yuan, Yifei
    Jin, Haibo
    Lu, Jun
    Zhao, Yongjie
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)