A NOTE ON THE EIGENVALUES OF n-CAYLEY GRAPHS

被引:0
作者
Arezoomand, Majid [1 ]
机构
[1] Univ Larestan, Larestan 7431716137, Iran
来源
MATEMATICKI VESNIK | 2020年 / 72卷 / 04期
关键词
Semi-Cayley graph; n-Cayley graph; quasi-abelian; eigenvalue;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called an n-Cayley graph over a group G if its automorphism contains a semi-regular subgroup isomorphic to G with n orbits. Every n-Cayley graph over a group G is completely determined by n(2) suitable subsets of G. If each of these subsets is a union of conjugacy classes of G, then it is called a quasi-abelian n-Cayley graph over G. In this paper, we determine the characteristic polynomial of quasi-abelian n-Cayley graphs. Then we exactly determine the eigenvalues and the number of closed walks of quasi-abelian semi-Cayley graphs. Furthermore, we construct some integral graphs.
引用
收藏
页码:351 / 357
页数:7
相关论文
共 11 条
[1]  
[Anonymous], 2001, Representations and Characters of Groups, DOI [10.1017/CBO9780511814532, DOI 10.1017/CBO9780511814532]
[2]  
Arezoomand M., FACTA U SER MATH INF
[3]  
AREZOOMAND M, 2013, ELECTRON J COMB, V20, P57
[4]  
Balinska KT., 2002, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat, V13, P42
[5]  
Biggs N, 1993, Algebraic Graph Theory, V67
[6]  
de Resmini M. J., 1992, J ALGEBR COMB, V1, P217
[7]   Characterization of 3D molecular structure [J].
Estrada, E .
CHEMICAL PHYSICS LETTERS, 2000, 319 (5-6) :713-718
[8]  
Isaacs I.M., 1976, Character theory of finite groups
[9]  
Ito N., 1984, MATH J OKAYAMA U, V26, P1
[10]   Quasi-Abelian Cayley graphs and parsons graphs [J].
Wang, J ;
Xu, MY .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (05) :597-600