A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels

被引:32
作者
Cai, Haotao [2 ,3 ]
Chen, Yanping [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Shandong, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
A fractional order collocations spectral method; Second kind Volterra integral equations with weakly singular kernels; Stability analysis; Convergence analysis; Condition number; GENERALIZED JACOBI FUNCTIONS; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; SPLINE COLLOCATION; GALERKIN METHODS; SPECTRAL METHODS; CONVERGENCE; SMOOTH;
D O I
10.1007/s10915-017-0568-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n, where denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order in the infinite norm and in the weighted square norm. In addition, we prove that for sufficiently large n, the infinity-norm condition number of the coefficient matrix corresponding to the linear system is and its spectral condition number is . Numerical examples are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:970 / 992
页数:23
相关论文
共 42 条
[41]  
Zayernouri M., 2013, J COMPUT PHYS, V47, P2108
[42]   FRACTIONAL SPECTRAL COLLOCATION METHOD [J].
Zayernouri, Mohsen ;
Karniadakis, George E. M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (01) :A40-A62