A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation

被引:74
作者
Huang, Shuangjie [1 ,2 ]
Liang, Zhihao [1 ]
Chen, Si [1 ]
Sun, Huwei [3 ]
Fan, Xiaorong [1 ]
Wang, Cailin [4 ]
Xu, Guohua [1 ]
Zhang, Yali [1 ]
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Key Lab Plant Nutr & Fertilizat Low Middle Reache, Minist Agr, Nanjing 210095, Jiangsu, Peoples R China
[2] Xinyang Agr & Forestry Univ, Henan Key Lab Tea Plant Comprehens Utilizat South, Xinyang 464000, Peoples R China
[3] Henan Agr Univ, Coll Agron, Collaborat Innovat Ctr Henan Grain Crops, Key Lab Rice Biol Henan Prov, Zhengzhou 450002, Henan, Peoples R China
[4] Jiangsu Acad Agr Sci, Inst Food Crops, Nanjing 210014, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
NITROGEN-USE EFFICIENCY; MADS-BOX GENE; ARABIDOPSIS NITRATE; AUXIN TRANSPORT; PLANT-GROWTH; RICE; EXPRESSION; RESPONSES; SYSTEM; ACQUISITION;
D O I
10.1104/pp.19.00142
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Root nitrate uptake adjusts to the plant's nitrogen demand for growth. Here, we report that OsMADS57, a MADS-box transcription factor, modulates nitrate translocation from rice (Oryza sativa) roots to shoots under low-nitrate conditions. OsMADS57 is abundantly expressed in xylem parenchyma cells of root stele and is induced by nitrate. Compared with wild-type rice plants supplied with 0.2 mM nitrate, osmads57 mutants had 31% less xylem loading of nitrate, while overexpression lines had 2-fold higher levels. Shoot-root N-15 content ratios were 40% lower in the mutants and 76% higher in the overexpression lines. Rapid NO3- root influx experiments showed that mutation of OsMADS57 did not affect root nitrate uptake. Reverse transcription quantitative PCR analysis of OsNRT2 nitrate transporter genes showed that after 5 min in 0.2 mM nitrate, only OsNRT2.3a (a vascular-specific high-affinity nitrate transporter) had reduced (by two-thirds) expression levels. At 60 min of nitrate treatment, lower expression levels were also observed for three additional NRT2 genes (OsNRT2.1/2.2/2.4). Conversely, in the overexpression lines, four NRT2 genes had much higher expression profiles at all time points tested. As previously reported, OsNRT2.3a functions in nitrate translocation, indicating the possible interaction between OsMADS57 and OsNRT2.3a. Yeast one-hybrid and transient expression assays demonstrated that OsMADS57 binds to the CArG motif (CATTTTATAG) within the OsNRT2.3a promoter. Moreover, seminal root elongation was inhibited in osmads57 mutants, which may be associated with higher auxin levels in and auxin polar transport to root tips of mutant plants. Taken together, these results suggest that OsMADS57 has a role in regulating nitrate translocation from root to shoot via OsNRT2.3a.
引用
收藏
页码:882 / 895
页数:14
相关论文
共 90 条
[1]   Characterization of the Arabidopsis Nitrate Transporter NRT1.6 Reveals a Role of Nitrate in Early Embryo Development [J].
Almagro, Anabel ;
Lin, Shan Hua ;
Tsay, Yi Fang .
PLANT CELL, 2008, 20 (12) :3289-3299
[2]   Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots [J].
Alvarez, Jose M. ;
Riveras, Eleodoro ;
Vidal, Elena A. ;
Gras, Diana E. ;
Contreras-Lopez, Orlando ;
Tamayo, Karem P. ;
Aceituno, Felipe ;
Gomez, Isabel ;
Ruffel, Sandrine ;
Lejay, Laurence ;
Jordana, Xavier ;
Gutierrez, Rodrigo A. .
PLANT JOURNAL, 2014, 80 (01) :1-13
[3]   Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction [J].
Araki, Ryoichi ;
Hasegawa, Hiroshi .
BREEDING SCIENCE, 2006, 56 (03) :295-302
[4]   Members of BTB Gene Family of Scaffold Proteins Suppress Nitrate Uptake and Nitrogen Use Efficiency [J].
Araus, Viviana ;
Vidal, Elena A. ;
Puelma, Tomas ;
Alamos, Simon ;
Mieulet, Delphine ;
Guiderdoni, Emmanuel ;
Gutierrez, Rodrigo A. .
PLANT PHYSIOLOGY, 2016, 171 (02) :1523-1532
[5]   Cell cycle:: the key to plant growth control? [J].
Beemster, GTS ;
Fiorani, F ;
Inzé, D .
TRENDS IN PLANT SCIENCE, 2003, 8 (04) :154-158
[6]   Gene structure and expression of the high-affinity nitrate transport system in rice roots [J].
Cai, Chao ;
Wang, Jun-Yi ;
Zhu, Yong-Guan ;
Shen, Qi-Rong ;
Li, Bin ;
Tong, Yi-Ping ;
Li, Zhen-Sheng .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2008, 50 (04) :443-451
[7]   The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis [J].
Castaings, Loren ;
Camargo, Antonio ;
Pocholle, Delphine ;
Gaudon, Virginie ;
Texier, Yves ;
Boutet-Mercey, Stephanie ;
Taconnat, Ludivine ;
Renou, Jean-Pierre ;
Daniel-Vedele, Francoise ;
Fernandez, Emilio ;
Meyer, Christian ;
Krapp, Anne .
PLANT JOURNAL, 2009, 57 (03) :426-435
[8]   Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1 [J].
Chen, Yingnan ;
Fan, Xiaorong ;
Song, Wenjing ;
Zhang, Yali ;
Xu, Guohua .
PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (02) :139-149
[9]   Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development [J].
Chiu, CC ;
Lin, CS ;
Hsia, AP ;
Su, RC ;
Lin, HL ;
Tsay, YF .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (09) :1139-1148
[10]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395