Deep learning for finance: deep portfolios

被引:355
作者
Heaton, J. B. [1 ,4 ]
Polson, N. G. [2 ,4 ]
Witte, J. H. [3 ,4 ]
机构
[1] Bartlit Beck Herman Palenchar & Scott LLP, Chicago, IL 60654 USA
[2] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[3] Univ Oxford, Math Inst, Oxford, England
[4] GreyMaths Inc, Chicago, IL 60602 USA
关键词
deep learning; machine learning; big data; artificial intelligence; finance; asset pricing; volatility; deep frontier; NETWORKS;
D O I
10.1002/asmb.2209
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems - such as those presented in designing and pricing securities, constructing portfolios, and risk management - often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 2009, ELEMENTS STAT LEARNI
[2]  
[Anonymous], 2012, NIPS
[3]   Fisher lecture: Dimension reduction in regression [J].
Cook, R. Dennis .
STATISTICAL SCIENCE, 2007, 22 (01) :1-26
[4]   ON NONLINEAR FUNCTIONS OF LINEAR-COMBINATIONS [J].
DIACONIS, P ;
SHAHSHAHANI, M .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01) :175-191
[5]  
Gallant A. R., 1988, IEEE International Conference on Neural Networks (IEEE Cat. No.88CH2632-8), P657, DOI 10.1109/ICNN.1988.23903
[6]   Deep learning for finance: deep portfolios [J].
Heaton, J. B. ;
Polson, N. G. ;
Witte, J. H. .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (01) :3-12
[7]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[8]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[9]   A NONPARAMETRIC APPROACH TO PRICING AND HEDGING DERIVATIVE SECURITIES VIA LEARNING NETWORKS [J].
HUTCHINSON, JM ;
LO, AW ;
POGGIO, T .
JOURNAL OF FINANCE, 1994, 49 (03) :851-889
[10]  
KOLMOGOROV AN, 1957, DOKL AKAD NAUK SSSR+, V114, P953