Analysis of some mixed elements for the Stokes problem

被引:9
作者
Cheng, XL
Han, WM
Huang, HC
机构
[1] HONG KONG BAPTIST UNIV,DEPT MATH,KOWLOON,HONG KONG
[2] HANGZHOU UNIV,DEPT MATH,HANGZHOU 310028,PEOPLES R CHINA
[3] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
关键词
Stokes problem; mixed finite elements; reduced integration penalty method; optimal order error estimates;
D O I
10.1016/S0377-0427(97)00120-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss some mixed finite element methods related to the reduced integration penalty method for solving the Stokes problem. We prove optimal order error estimates for bilinear-constant and biquadratic-bilinear velocity-pressure finite element solutions. The result for the biquadratic-bilinear element is new while that for the bilinear-constant element improves the convergence analysis of Johnson and Pitkaranta (1982). In the degenerate case when the penalty parameter is set to be zero, our results reduce to some related known results proved in by Brezzi and Fortin (1991) for the bilinear-constant element, and Bercovier and Pironneau (1979) for the biquadratic-bilinear element. Our theoretical results are consistent with the numerical results reported by Carey and Krishnan (1982) and Oden et al. (1982).
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [31] A new family of mixed finite elements for the linear elastodynamic problem
    Bécache, E
    Joly, P
    Tsogka, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) : 2109 - 2132
  • [32] A posteriori analysis of a penalty method and application to the stokes problem
    Bernardi, C
    Girault, V
    Hecht, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (11) : 1599 - 1628
  • [33] Estimates for solutions of the nonstationary Stokes problem in anisotropic sobolev spaces with mixed norm
    Maremonti P.
    Solonnikov V.A.
    Journal of Mathematical Sciences, 1997, 87 (5) : 3859 - 3877
  • [34] A finite element method by patch reconstruction for the Stokes problem using mixed formulations
    Li, Ruo
    Sun, Zhiyuan
    Yang, Fanyi
    Yang, Zhijian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 1 - 20
  • [35] Stokes Problem with Slip Boundary Conditions of Friction Type: Error Analysis of a Four-Field Mixed Variational Formulation
    Mekki Ayadi
    Hela Ayed
    Leonardo Baffico
    Taoufik Sassi
    Journal of Scientific Computing, 2019, 81 : 312 - 341
  • [36] Stokes Problem with Slip Boundary Conditions of Friction Type: Error Analysis of a Four-Field Mixed Variational Formulation
    Ayadi, Mekki
    Ayed, Hela
    Baffico, Leonardo
    Sassi, Taoufik
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 312 - 341
  • [37] A new class of stabilized mesh-free finite elements for the approximation of the Stokes problem
    Kumar, VVKS
    Kumar, BVR
    Das, PC
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 703 - 722
  • [38] PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS
    Wei, Huayi
    Huang, Xuehai
    Li, Ao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1835 - 1856
  • [39] Uniformly convergent H(div)-conforming rectangular elements for Darcy-Stokes problem
    Chen ShaoChun
    Dong Lina
    Qiao ZhongHua
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (12) : 2723 - 2736
  • [40] Approximation of generalized Stokes problems using dual-mixed finite elements without enrichment
    Howell, Jason S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (02) : 247 - 268