Analysis of some mixed elements for the Stokes problem

被引:9
|
作者
Cheng, XL
Han, WM
Huang, HC
机构
[1] HONG KONG BAPTIST UNIV,DEPT MATH,KOWLOON,HONG KONG
[2] HANGZHOU UNIV,DEPT MATH,HANGZHOU 310028,PEOPLES R CHINA
[3] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
关键词
Stokes problem; mixed finite elements; reduced integration penalty method; optimal order error estimates;
D O I
10.1016/S0377-0427(97)00120-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss some mixed finite element methods related to the reduced integration penalty method for solving the Stokes problem. We prove optimal order error estimates for bilinear-constant and biquadratic-bilinear velocity-pressure finite element solutions. The result for the biquadratic-bilinear element is new while that for the bilinear-constant element improves the convergence analysis of Johnson and Pitkaranta (1982). In the degenerate case when the penalty parameter is set to be zero, our results reduce to some related known results proved in by Brezzi and Fortin (1991) for the bilinear-constant element, and Bercovier and Pironneau (1979) for the biquadratic-bilinear element. Our theoretical results are consistent with the numerical results reported by Carey and Krishnan (1982) and Oden et al. (1982).
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [1] Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem
    Armentano, Maria G.
    Blasco, Jordi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1404 - 1416
  • [2] Analysis of Estimators for Stokes Problem Using a Mixed Approximation
    El Akkad, Abdeslam
    Elkhalfi, Ahmed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (06): : 105 - 128
  • [3] NUMERICAL EXPERIMENTS FOR THE ARNOLD-WINTHER MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM
    Carstensen, Carsten
    Gedicke, Joscha
    Park, Eun-Jae
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) : A2267 - A2287
  • [4] Superconvergence of some nonconforming brick elements for the 3D Stokes problem
    Zhou, Xinchen
    Niu, Hexin
    Meng, Zhaoliang
    Su, Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 151 : 50 - 66
  • [5] Analysis of some low-order nonconforming mixed finite elements for linear elasticity problem
    Kim, KY
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) : 638 - 660
  • [6] A mixed finite element method for the generalized Stokes problem
    Bustinza, R
    Gatica, GN
    González, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 49 (08) : 877 - 903
  • [7] A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density
    Caucao, Sergio
    Mora, David
    Oyarzua, Ricardo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 947 - 983
  • [8] Modified cross-grid finite elements for the Stokes problem
    Hong, SW
    Kim, K
    Lee, SY
    APPLIED MATHEMATICS LETTERS, 2003, 16 (01) : 59 - 64
  • [9] Least-squares spectral elements applied to the Stokes problem
    Proot, MMJ
    Gerrtisma, MI
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (02) : 454 - 477
  • [10] DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Vacca, Giuseppe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 509 - 535