Quantifying Australia's life cycle greenhouse gas emissions for new homes

被引:23
|
作者
Schmidt, Monique [1 ]
Crawford, Robert H. [1 ]
Warren-Myers, Georgia [1 ]
机构
[1] Univ Melbourne, Fac Architecture Bldg & Planning, Melbourne, Vic 3010, Australia
关键词
Australia; Life cycle analysis; Greenhouse gas emissions; Housing; ENERGY; BUILDINGS; PERFORMANCE; INFORMATION; DESIGN;
D O I
10.1016/j.enbuild.2020.110287
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Australia is going through a significant housing boom with approximately 200,000 new homes built each year; and significantly more are required on an annual basis to accommodate the estimated population growth of almost 36 million by 2050. The effects of climate change are increasingly being felt and respon-sive action is required for mitigation and adaption, which must include the greenhouse gas (GHG) emis-sion implications of this new residential stock. Mitigation strategies have been predominantly focused on decreasing the operational GHG emissions associated with buildings, leaving the other life cycle stages, such as construction, largely ignored. To achieve national targets, such as zero net emissions by 2050, it is imperative to address GHG emissions mitigation from a life cycle perspective. This study found that based on current building practices one new detached dwelling built today will be responsible for roughly 545 tCO(2)e by 2050. This translates to the need to plant over 8,000 trees to offset these emissions, a figure it is safe to say, most homeowners will not achieve. This study modelled life cycle GHG emissions of all new detached dwellings constructed in Australia for a single year (2019) estimating 39 MtCO(2)e, which increases to 883 MtCO(2)e by 2030 and 3,654 MtCO(2)e by 2050. This is much higher than the current projections for Australia's total emissions by 2030 of 563 MtCO(2)e if a business as usual approach is fol-lowed, and the optimum target of 441 MtCO(2)e to meet emissions targets of 26% less than 2005. The results of this study suggest that housing-related GHG emission are underestimated by 60%, because of the absence of embodied GHG emissions being counted in emission projections. This emphasises that firstly, target and current GHG emission projections fail to consider emissions from a life cycle perspec-tive, and primarily report findings based on operational data, which as this study has shown can lead to a misrepresentation of almost 96% of total life cycle GHG emissions. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The impact of 'Cash for Clunkers' on greenhouse gas emissions: a life cycle perspective
    Lenski, Shoshannah M.
    Keoleian, Gregory A.
    Bolon, Kevin M.
    ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (04):
  • [32] Developing an integrated framework for assessing the life cycle greenhouse gas emissions and life cycle cost of buildings
    Schmidt, Monique
    Crawford, Robert H.
    CREATIVE CONSTRUCTION CONFERENCE 2017, CCC 2017, 2017, 196 : 988 - 995
  • [33] Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Primary and Recycled Aluminum in China
    Peng, Tianduo
    Ren, Lei
    Du, Ershun
    Ou, Xunmin
    Yan, Xiaoyu
    PROCESSES, 2022, 10 (11)
  • [34] Life Cycle Greenhouse Gas Emissions Reduction From Rigid Thermal Insulation Use in Buildings
    Mazor, Michael H.
    Mutton, John D.
    Russell, David A. M.
    Keoleian, Gregory A.
    JOURNAL OF INDUSTRIAL ECOLOGY, 2011, 15 (02) : 284 - 299
  • [35] Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet
    Woody, Maxwell
    Vaishnav, Parth
    Craig, Michael T.
    Keoleian, Gregory A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (18) : 13391 - 13397
  • [36] Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou city
    Zhan, Jinyan
    Liu, Wei
    Wu, Feng
    Li, Zhihui
    Wang, Chao
    JOURNAL OF CLEANER PRODUCTION, 2018, 194 : 318 - 326
  • [37] Life-cycle greenhouse gas emissions associated with nuclear power generation in the United States
    Ng, Jun Hong Clarence
    Vyawahare, Pradeep
    Benavides, Pahola Thathiana
    Gan, Yu
    Sun, Pingping
    Boardman, Richard
    Marcinkoski, Jason
    Elgowainy, Amgad
    JOURNAL OF INDUSTRIAL ECOLOGY, 2025,
  • [38] Life cycle greenhouse gas emissions and mitigation opportunities of high-speed train in China
    Cai, Zimeng
    Xu, Changqing
    Chang, Huimin
    Guo, Jing
    Fu, Chenling
    Li, Nan
    Zhao, Dong
    Xu, Ming
    JOURNAL OF CLEANER PRODUCTION, 2025, 504
  • [39] Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production
    Johnson, David R.
    Willis, Henry H.
    Curtright, Aimee E.
    Samaras, Constantine
    Skone, Timothy
    BIOMASS & BIOENERGY, 2011, 35 (07) : 2619 - 2626
  • [40] Comparison of Twelve Organic and Conventional Farming Systems: A Life Cycle Greenhouse Gas Emissions Perspective
    Venkat, Kumar
    JOURNAL OF SUSTAINABLE AGRICULTURE, 2012, 36 (06): : 620 - 649