High-dimensional quantum cloning and applications to quantum hacking

被引:108
作者
Bouchard, Frederic [1 ]
Fickler, Robert [1 ]
Boyd, Robert W. [1 ,2 ]
Karimi, Ebrahim [1 ,3 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[3] Inst Adv Studies Basic Sci, Dept Phys, Zanjan 4513766731, Iran
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
ORBITAL ANGULAR-MOMENTUM; PHOTONS;
D O I
10.1126/sciadv.1601915
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.
引用
收藏
页数:6
相关论文
共 25 条
[1]   Improving Quantum State Estimation with Mutually Unbiased Bases [J].
Adamson, R. B. A. ;
Steinberg, A. M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]  
Bennett C. H., 2013, PHYS REV LETT, V110
[4]   Optimal state estimation for d-dimensional quantum systems [J].
Bruss, D ;
Macchiavello, C .
PHYSICS LETTERS A, 1999, 253 (5-6) :249-251
[5]   Quantum walks and wavepacket dynamics on a lattice with twisted photons [J].
Cardano, Filippo ;
Massa, Francesco ;
Qassim, Hammam ;
Karimi, Ebrahim ;
Slussarenko, Sergei ;
Paparo, Domenico ;
de Lisio, Corrado ;
Sciarrino, Fabio ;
Santamato, Enrico ;
Boyd, Robert W. ;
Marrucci, Lorenzo .
SCIENCE ADVANCES, 2015, 1 (02)
[6]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[7]  
Dada AC, 2011, NAT PHYS, V7, P677, DOI [10.1038/nphys1996, 10.1038/NPHYS1996]
[8]   ON MUTUALLY UNBIASED BASES [J].
Durt, Thomas ;
Englert, Berthold-Georg ;
Bengtsson, Ingemar ;
Zyczkowski, Karol .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (04) :535-640
[9]   Phase-covariant quantum cloning of qudits [J].
Fan, H ;
Imai, H ;
Matsumoto, K ;
Wang, XB .
PHYSICAL REVIEW A, 2003, 67 (02) :5
[10]   Optimal quantum cloning machines [J].
Gisin, N ;
Massar, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2153-2156