POLYNOMIAL-EXPONENTIAL EQUATIONS INVOLVING MULTI-RECURRENCES

被引:7
作者
Fuchs, Clemens [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Polynomial-exponential Diophantine equations; multi-recurrences; Subspace Theorem; DIOPHANTINE EQUATIONS; PURE POWERS; SEQUENCES; ROOT;
D O I
10.1556/SScMath.2009.1098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider polynomial-exponential Diophantine equations of the form G(n)((0))y(d) + G(n)((1))y(d-1) + ... + G(n)((d-1))y+G(n)(d) = 0 where G(n)((i)) are multi-recurrences, i.e. polynomial-exponential functions in variables n = (n(1), ... , n(k)). Under suitable (but restrictive) conditions we prove that there are finitely many multi-recurrences H-n((1)), ... , H-n((s)) such that for all solutions (n(1), ... , n(k), y) is an element of N-k x Z we either have H-n((i)) = 0 y = H-n((j)) for certain 1 <= i, j <= 8, respectively. This generalizes earlier results of this type on such equations. The proof uses a recent result by Corvaja and Zannier.
引用
收藏
页码:377 / 398
页数:22
相关论文
共 45 条
[1]  
[Anonymous], 2002, PRIMER REAL ANAL FUN
[2]  
Artin M., 1968, Inventiones Math, V5, P277, DOI DOI 10.1007/BF01389777
[3]  
Brindza B, 1998, NUMBER THEORY, P101
[4]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[5]   On the diophantine equation f(am, y) = bn [J].
Corvaja, P ;
Zannier, U .
ACTA ARITHMETICA, 2000, 94 (01) :25-40
[6]   S-unit points on analytic hypersurfaces [J].
Corvaja, P ;
Zannier, U .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (01) :76-92
[7]   Diophantine equations with power sums and Universal Hilbert Sets [J].
Corvaja, P ;
Zannier, U .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1998, 9 (03) :317-332
[8]   Some new applications of the Subspace Theorem [J].
Corvaja, P ;
Zannier, U .
COMPOSITIO MATHEMATICA, 2002, 131 (03) :319-340
[9]   Factorisation in the ring of exponential polynomials [J].
Everest, GR ;
VanderPoorten, AJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) :1293-1298
[10]  
Evertse JH, 1996, COMPOS MATH, V101, P225