A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks

被引:0
作者
Antonakaki, Despoina [2 ]
Fragopoulou, Paraskevi [2 ]
Ioannidis, Sotiris [1 ,2 ]
机构
[1] Tech Univ Crete, Univ Campus,EL 090034024, Khania 73100, Crete, Greece
[2] Fdn Res & Technol Hellas FORTH, Inst Comp Sci ICS, N Plastira 100 Vassilika Vouton,EL 090101655, GR-70013 Iraklion, Crete, Greece
关键词
Social networks; Twitter; Survey; Social graph; Sentiment analysis; Spam; Bots; Fake news; Hate speech; SOCIAL MEDIA; SMALL-WORLD; NETWORKS; FRAMEWORK; TWEETS; ONLINE; TOOL; BOT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Twitter is the third most popular worldwide Online Social Network (OSN) after Facebook and Instagram. Compared to other OSNs, it has a simple data model and a straightforward data access API. This makes it ideal for social network studies attempting to analyze the patterns of online behavior, the structure of the social graph, the sentiment towards various entities and the nature of malicious attacks in a vivid network with hundreds of millions of users. Indeed, Twitter has been established as a major research platform, utilized in more than ten thousands research articles over the last ten years. Although there are excellent review and comparison studies for most of the research that utilizes Twitter, there are limited efforts to map this research terrain as a whole. Here we present an effort to map the current research topics in Twitter focusing on three major areas: the structure and properties of the social graph, sentiment analysis and threats such as spam, bots, fake news and hate speech. We also present Twitter's basic data model and best practices for sampling and data access. This survey also lays the ground of computational techniques used in these areas such as Graph Sampling, Natural Language Processing and Machine Learning. Along with existing reviews and comparison studies, we also discuss the key findings and the state of the art in these methods. Overall, we hope that this survey will help researchers create a clear conceptual model of Twitter and act as a guide to expand further the topics presented.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Sentiment Analysis for Twitter Data in the Hindi Language
    Madan, Anjum
    Ghose, Udayan
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 784 - 789
  • [22] Machine Learning Techniques for Sentiment Analysis of COVID-19-Related Twitter Data
    Braig, Niklas
    Benz, Alina
    Voth, Soeren
    Breitenbach, Johannes
    Buettner, Ricardo
    IEEE ACCESS, 2023, 11 : 14778 - 14803
  • [23] A Review of Techniques for Sentiment Analysis Of Twitter Data
    Bhuta, Sagar
    Doshi, Avit
    Doshi, Uehit
    Narvekar, Meera
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON ISSUES AND CHALLENGES IN INTELLIGENT COMPUTING TECHNIQUES (ICICT), 2014, : 583 - 591
  • [24] Sentiment Analysis on COVID-19 Twitter Data: A Sentiment Timeline
    Karagkiozidou, Makrina
    Koukaras, Paraskevas
    Tjortjis, Christos
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2022, PART II, 2022, 647 : 350 - 359
  • [25] Development of intelligent model for twitter sentiment analysis
    Perti, Ashwin
    Trivedi, Munesh Chandra
    Sinha, Amit
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 4515 - 4519
  • [26] COVID-19 pandemic and the economy: sentiment analysis on Twitter data
    Fano, Shira
    Toschi, Gianluca
    INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2022, 12 (04) : 429 - 444
  • [27] Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
    Pandarachalil, Rafeeque
    Sendhilkumar, Selvaraju
    Mahalakshmi, G. S.
    COGNITIVE COMPUTATION, 2015, 7 (02) : 254 - 262
  • [28] Sentiment analysis of twitter data to detect and predict political leniency using natural language processing
    Kowsik, V. V. Sai
    Yashwanth, L.
    Harish, Srivatsan
    Kishore, A.
    Renji, S.
    Jose, Arun Cyril
    Dhanyamol, M., V
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, 62 (03) : 765 - 785
  • [29] Sentiment Analysis and Summarization of Twitter Data
    Bahrainian, Seyed-Ali
    Dengel, Andreas
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 227 - 234
  • [30] Sentiment analysis of multimodal twitter data
    Akshi Kumar
    Geetanjali Garg
    Multimedia Tools and Applications, 2019, 78 : 24103 - 24119