Some Properties of the Kilbas-Saigo Function

被引:20
作者
Boudabsa, Lotfi [1 ]
Simon, Thomas [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
[2] Univ Lille, Lab Paul Painleve, UMR 8524, Cite Sci, F-59655 Villeneuve Dascq, France
关键词
complete monotonicity; convex ordering; double Gamma function; fractional extreme distribution; Kilbas-Saigo function; Le Roy function; Mittag-Leffler function; stable subordinator; LEFFLER; ASYMPTOTICS;
D O I
10.3390/math9030217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the complete monotonicity of the Kilbas-Saigo function on the negative half-line. We also provide the exact asymptotics at -infinity, and uniform hyperbolic bounds are derived. The same questions are addressed for the classical Le Roy function. The main ingredient for the proof is a probabilistic representation of these functions in terms of the stable subordinator.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 25 条
[1]  
Andrews G. E., 1999, Encyclopedia Math. Appl., V71
[2]  
[Anonymous], 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[3]  
[Anonymous], 1997, Exponential functionals and principal values related to Brownian motion
[4]   Asymptotic behaviour of the Urbanik semigroup [J].
Berg, Christian ;
Luis Lopez, Jose .
JOURNAL OF APPROXIMATION THEORY, 2015, 195 :109-121
[5]   Uniform asymptotic expansions for the Barnes double gamma function [J].
Billingham, J ;
King, AC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1964) :1817-1829
[6]   Fractional extreme distributions [J].
Boudabsa, Lotfi ;
Simon, Thomas ;
Vallois, Pierre .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 :1-20
[7]   Fractional models of anomalous relaxation based on the Kilbas and Saigo function [J].
de Oliveira, Edmundo Capelas ;
Mainardi, Francesco ;
Vaz, Jayme, Jr. .
MECCANICA, 2014, 49 (09) :2049-2060
[8]   G distributions and the beta-gamma algebra [J].
Dufresne, Daniel .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :2163-2199
[9]   MELLIN TRANSFORMS AND ASYMPTOTICS - HARMONIC SUMS [J].
FLAJOLET, P ;
GOURDON, X ;
DUMAS, P .
THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) :3-58
[10]   ON A GENERALIZED THREE-PARAMETER WRIGHT FUNCTION OF LE ROY TYPE [J].
Garrappa, Roberto ;
Rogosin, Sergei ;
Mainardi, Francesco .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) :1196-1215