共 46 条
Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates
被引:29
作者:
Wang, Debin
[1
,2
,3
]
Capehart, Stacy L.
[4
]
Pal, Suchetan
[5
,6
]
Liu, Minghui
[5
,6
]
Zhang, Lei
[1
,2
]
Schuck, P. James
[1
,2
]
Liu, Yan
Yan, Hao
[5
,6
]
Francis, Matthew B.
[1
,2
,4
]
De Yoreo, James J.
[1
,2
,3
]
机构:
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[3] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[6] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
来源:
关键词:
bioinspired assembly;
DNA origami;
virus capsid;
plasmonic nanostructure;
scanning confocal microscopy;
atomic force microscopy (AFM);
finite-difference time-domain (FDTD) simulation;
SINGLE-MOLECULE FLUORESCENCE;
GOLD NANOPARTICLES;
ELECTROMAGNETIC-FIELD;
SURFACE;
ENHANCEMENT;
DELIVERY;
BACTERIOPHAGE-MS2;
LIPOPROTEINS;
DEPENDENCE;
EMISSION;
D O I:
10.1021/nn5015819
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Building plasmonic nanostructures using biomolecules as scaffolds has shown great potential for attaining tunable light absorption and emission via precise spatial organization of optical species and antennae. Here we report bottom up assembly of hierarchical plasmonic nanostructures using DNA origami templates and MS2 virus capsids. These serve as programmable scaffolds that provide molecular level control over the distribution of fluorophores and nanometer-scale control over their distance from a gold nanoparticle antenna. While previous research using DNA origami to assemble plasmonic nanostructures focused on determining the distance-dependent response of single fluorophores, here we address the challenge of constructing hybrid nanostructures that present an organized ensemble of fluorophores and then investigate the plasmonic response. By combining finite-difference time-domain numerical simulations with atomic force microscopy and correlated scanning confocal fluorescence microscopy, we find that the use of the scaffold keeps the majority of the fluorophores out of the quenching zone, leading to increased fluorescence intensity and mild levels of enhancement. The results show that the degree of enhancement can be controlled by exploiting capsid scaffolds of different sizes and tuning capsid-AuNP distances. These bioinspired plasmonic nanostructures provide a flexible design for manipulating photonic excitation and photoemission.
引用
收藏
页码:7896 / 7904
页数:9
相关论文