Numerical continuation of symmetric periodic orbits

被引:19
作者
Wulff, Claudia [1 ]
Schebesch, Andreas
机构
[1] Univ Surrey, Dept Math & Stat, Guildford GU2 7XH, Surrey, England
[2] Free Univ Berlin, Fachbereich Math & Informat, D-14195 Berlin, Germany
关键词
numerical continuation; symmetry breaking bifurcations; symmetric periodic orbits;
D O I
10.1137/050637170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years there has been rapid progress in the development of a bifurcation theory for symmetric dynamical systems. However, there are hardly any results on the numerical computation of those bifurcations yet. In this paper we show how spatio-temporal symmetries of periodic orbits can be exploited numerically. We describe methods for the computation of symmetry breaking bifurcations of periodic orbits for free group actions and show how bifurcations increasing the spatio-temporal symmetry of periodic orbits ( including period halving bifurcations and equivariant Hopf bifurcations) can be detected and computed numerically. Our pathfollowing algorithm is based on a multiple shooting algorithm for the numerical computation of periodic orbits via an adaptive Poincare section and a tangential continuation method with implicit reparametrization.
引用
收藏
页码:435 / 475
页数:41
相关论文
共 26 条
[1]  
[Anonymous], 1988, LECT NOTES MATH
[2]  
[Anonymous], 2000, AUTO2000 CONTINUATIO
[3]  
Beyn W.-J., 2002, HDB DYNAMICAL SYSTEM, V2, P149, DOI [DOI 10.1016/S1874-575X, DOI 10.1016/S1874-575X(02)80025-X]
[4]  
Cliffe KA, 2000, INT J NUMER METH FL, V32, P175, DOI 10.1002/(SICI)1097-0363(20000130)32:2<175::AID-FLD912>3.0.CO
[5]  
2-5
[6]  
DELLNITZ M, 1990, NATO ADV SCI I C-MAT, V313, P153
[7]   COMPUTATIONAL BIFURCATION OF PERIODIC-SOLUTIONS IN SYSTEMS WITH SYMMETRY [J].
DELLNITZ, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (03) :429-455
[8]   EFFICIENT NUMERICAL PATH-FOLLOWING BEYOND CRITICAL-POINTS [J].
DEUFLHARD, P ;
FIEDLER, B ;
KUNKEL, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :912-927
[9]   RECENT PROGRESS IN EXTRAPOLATION METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEUFLHARD, P .
SIAM REVIEW, 1985, 27 (04) :505-535
[10]  
Gatermann K., 1991, Impact of Computing in Science and Engineering, V3, P330, DOI 10.1016/0899-8248(91)90003-D