Internal wave attractors over random, small-amplitude topography

被引:15
作者
Guo, Yuan [1 ]
Holmes-Cerfon, Miranda [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
internal waves; nonlinear dynamical systems; topographic effects; TIDAL CONVERSION; INERTIAL WAVES; DEEP-OCEAN; SCATTERING; TIDES; DISSIPATION; GENERATION; ENERGY; CIRCULATION; SURFACE;
D O I
10.1017/jfm.2015.648
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider whether small-amplitude topography in a two-dimensional ocean may contain internal wave attractors. These are closed orbits formed by the characteristics (or wave beam paths) of the linear, inviscid, steady-state Boussinesq equations, and their existence may imply enhanced scattering and energy decay for the internal tide when dissipation is present. We develop a numerical code to detect attractors over arbitrary topography, and apply this to random, Gaussian topography with different covariance functions. The rate of attractors per length of topography increases with the fraction of supercritical topography, but surprisingly, it also increases as the amplitude of the topography is decreased, while the supercritical fraction is held constant. This can partly be understood by appealing to Rice's formula for the rate of zero crossings of a stochastic process. We compute the rate of attractors for a covariance function typical of ocean bathymetry away from large features and find it is about 10 attractors per 1000 km. This could have implications for the overall energy budget of the ocean.
引用
收藏
页码:148 / 174
页数:27
相关论文
共 55 条
[1]  
Adler R.J, 2007, Springer Monographs in Mathematics
[2]   The formation and fate of internal waves in the South China Sea [J].
Alford, Matthew H. ;
Peacock, Thomas ;
MacKinnon, Jennifer A. ;
Nash, Jonathan D. ;
Buijsman, Maarten C. ;
Centuroni, Luca R. ;
Chao, Shenn-Yu ;
Chang, Ming-Huei ;
Farmer, David M. ;
Fringer, Oliver B. ;
Fu, Ke-Hsien ;
Gallacher, Patrick C. ;
Graber, Hans C. ;
Helfrich, Karl R. ;
Jachec, Steven M. ;
Jackson, Christopher R. ;
Klymak, Jody M. ;
Ko, Dong S. ;
Jan, Sen ;
Johnston, T. M. Shaun ;
Legg, Sonya ;
Lee, I-Huan ;
Lien, Ren-Chieh ;
Mercier, Matthieu J. ;
Moum, James N. ;
Musgrave, Ruth ;
Park, Jae-Hun ;
Pickering, Andrew I. ;
Pinkel, Robert ;
Rainville, Luc ;
Ramp, Steven R. ;
Rudnick, Daniel L. ;
Sarkar, Sutanu ;
Scotti, Alberto ;
Simmons, Harper L. ;
St Laurent, Louis C. ;
Venayagamoorthy, Subhas K. ;
Wang, Yu-Huai ;
Wang, Joe ;
Yang, Yiing J. ;
Paluszkiewicz, Theresa ;
Tang, Tswen-Yung .
NATURE, 2015, 521 (7550) :65-U381
[3]   On the appearance of internal wave attractors due to an initial or parametrically excited disturbance [J].
Bajars, Janis ;
Frank, Jason ;
Maas, Leo R. M. .
JOURNAL OF FLUID MECHANICS, 2013, 714 :283-311
[4]   Tidal Conversion by Supercritical Topography [J].
Balmforth, Neil J. ;
Peacock, Thomas .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2009, 39 (08) :1965-1974
[5]  
Balmforth NJ, 2002, J PHYS OCEANOGR, V32, P2900, DOI 10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO
[6]  
2
[7]   CHECKERBOARD MAPS [J].
BALMFORTH, NJ ;
SPIEGEL, EA ;
TRESSER, C .
CHAOS, 1995, 5 (01) :216-226
[8]   LEE WAVES IN STRATIFIED FLOWS WITH SIMPLE HARMONIC TIME-DEPENDENCE [J].
BELL, TH .
JOURNAL OF FLUID MECHANICS, 1975, 67 (FEB25) :705-722
[9]   STATISTICAL FEATURES OF SEA-FLOOR TOPOGRAPHY [J].
BELL, TH .
DEEP-SEA RESEARCH, 1975, 22 (12) :883-892
[10]   Decay of an internal tide due to random topography in the ocean [J].
Buehler, Oliver ;
Holmes-Cerfon, Miranda .
JOURNAL OF FLUID MECHANICS, 2011, 678 :271-293