Assessing predictions on fitness effects of missense variants in calmodulin

被引:11
作者
Zhang, Jing [1 ,2 ]
Kinch, Lisa N. [3 ]
Cong, Qian [1 ,2 ]
Katsonis, Panagiotis [4 ]
Lichtarge, Olivier [4 ,5 ]
Savojardo, Castrense [6 ]
Babbi, Giulia [6 ]
Martelli, Pier Luigi [6 ]
Capriotti, Emidio [6 ]
Casadio, Rita [6 ]
Garg, Aditi [7 ]
Pal, Debnath [7 ]
Weile, Jochen [8 ,9 ,10 ]
Sun, Song [8 ,9 ,10 ]
Verby, Marta [8 ,9 ,10 ]
Roth, Frederick P. [8 ,9 ,10 ,11 ]
Grishin, Nick, V [1 ,2 ,3 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Biophys, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Howard Hughes Med Inst, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
[4] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Pharmacol, Dept Biochem & Mol Biol, Computat & Integrat Biomed Res Ctr, Houston, TX 77030 USA
[6] Univ Bologna, FABIT Giorgio Prodi Interdept Ctr Canc Res, Biocomp Grp, Bologna, Italy
[7] Indian Inst Sci, Dept Computat & Data Sci, Bangalore, Karnataka, India
[8] Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[9] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[10] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[11] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
基金
美国国家卫生研究院;
关键词
CAGI; calmodulin; disease; missense variants; predictors; MUTATIONS; EVOLUTIONARY; ACTIVATION; SEQUENCE; BINDING; RECOGNITION; DATABASE; CATALOG;
D O I
10.1002/humu.23857
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This paper reports the evaluation of predictions for the "CALM1" challenge in the fifth round of the Critical Assessment of Genome Interpretation held in 2018. In the challenge, the participants were asked to predict effects on yeast growth caused by missense variants of human calmodulin, a highly conserved protein in eukaryotic cells sensing calcium concentration. The performance of predictors implementing different algorithms and methods is similar. Most predictors are able to identify the deleterious or tolerated variants with modest accuracy, with a baseline predictor based purely on sequence conservation slightly outperforming the submitted predictions. Nevertheless, we think that the accuracy of predictions remains far from satisfactory, and the field awaits substantial improvements. The most poorly predicted variants in this round surround functional CALM1 sites that bind calcium or peptide, which suggests that better incorporation of structural analysis may help improve predictions.
引用
收藏
页码:1463 / 1473
页数:11
相关论文
共 50 条
  • [1] Assessing predictions on fitness effects of missense variants in HMBS in CAGI6
    Zhang, Jing
    Kinch, Lisa
    Katsonis, Panagiotis
    Lichtarge, Olivier
    Jagota, Milind
    Song, Yun S.
    Sun, Yuanfei
    Shen, Yang
    Kuru, Nurdan
    Dereli, Onur
    Adebali, Ogun
    Alladin, Muttaqi Ahmad
    Pal, Debnath
    Capriotti, Emidio
    Turina, Maria Paola
    Savojardo, Castrense
    Martelli, Pier Luigi
    Babbi, Giulia
    Casadio, Rita
    Pucci, Fabrizio
    Rooman, Marianne
    Cia, Gabriel
    Tsishyn, Matsvei
    Strokach, Alexey
    Hu, Zhiqiang
    van Loggerenberg, Warren
    Roth, Frederick P.
    Radivojac, Predrag
    Brenner, Steven E.
    Cong, Qian
    Grishin, Nick V.
    HUMAN GENETICS, 2024, : 173 - 189
  • [2] Assessing predictions of fitness effects of missense mutations in SUMO-conjugating enzyme UBE2I
    Zhang, Jing
    Kinch, Lisa N.
    Cong, Qian
    Weile, Jochen
    Sun, Song
    Cote, Atina G.
    Roth, Frederick P.
    Grishin, Nick V.
    HUMAN MUTATION, 2017, 38 (09) : 1051 - 1063
  • [3] SIFT missense predictions for genomes
    Vaser, Robert
    Adusumalli, Swarnaseetha
    Leng, Sim Ngak
    Sikic, Mile
    Ng, Pauline C.
    NATURE PROTOCOLS, 2016, 11 (01) : 1 - 9
  • [4] In-silico Analysis of NF1 Missense Variants in ClinVar: Translating Variant Predictions into Variant Interpretation and Classification
    Accetturo, Matteo
    Bartolomeo, Nicola
    Stella, Alessandro
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [5] Dominant negative effects of SCN5A missense variants
    O'Neill, Matthew J.
    Muhammad, Ayesha
    Li, Bian
    Wada, Yuko
    Hall, Lynn
    Solus, Joseph F.
    Short, Laura
    Roden, Dan M.
    Glazer, Andrew M.
    GENETICS IN MEDICINE, 2022, 24 (06) : 1238 - 1248
  • [6] Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators
    Deak, Gauri
    Cook, Atlanta G.
    JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (09)
  • [7] Performance of Mutation Pathogenicity Prediction Methods on Missense Variants
    Thusberg, Janita
    Olatubosun, Ayodeji
    Vihinen, Mauno
    HUMAN MUTATION, 2011, 32 (04) : 358 - 368
  • [8] A domain damage index to prioritizing the pathogenicity of missense variants
    Chen, Hua-Chang
    Wang, Jing
    Liu, Qi
    Shyr, Yu
    HUMAN MUTATION, 2021, 42 (11) : 1503 - 1517
  • [9] Protein structure-based evaluation of missense variants: Resources, challenges and future directions
    David, Alessia
    Sternberg, Michael J. E.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 80
  • [10] LYRUS: a machine learning model for predicting the pathogenicity of missense variants
    Lai, Jiaying
    Yang, Jordan
    Gamsiz Uzun, Ece D.
    Rubenstein, Brenda M.
    Sarkar, Indra Neil
    BIOINFORMATICS ADVANCES, 2022, 2 (01):