Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis

被引:51
作者
Agarwal, Daksh [1 ]
Aspetti, Carlos O. [1 ]
Cargnello, Matteo [2 ,4 ]
Ren, MingLiang [1 ]
Yoo, Jinkyoung [3 ]
Murray, Christopher B. [1 ,2 ]
Agarwal, Ritesh [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[3] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
基金
美国能源部;
关键词
Localized surface plasmons; thermoplasmonics; metallo-dielectric cavity; silicon; cavity heating Raman spectroscopy; nanowire; photoreforming; FANO RESONANCE; PHOTOLUMINESCENCE; SCATTERING;
D O I
10.1021/acs.nanolett.6b05147
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photo-voltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO2 nanorods increases the hydrogen production rate by similar to 40% compared to similar Au-TiO2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallodielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.
引用
收藏
页码:1839 / 1845
页数:7
相关论文
共 34 条
[1]   Heterogenous Catalysis Mediated by Plasmon Heating [J].
Adleman, James R. ;
Boyd, David A. ;
Goodwin, David G. ;
Psaltis, Demetri .
NANO LETTERS, 2009, 9 (12) :4417-4423
[2]   Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy [J].
Aspetti, Carlos O. ;
Cho, Chang-Hee ;
Agarwal, Rahul ;
Agarwal, Ritesh .
NANO LETTERS, 2014, 14 (09) :5413-5422
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[4]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[5]   ANHARMONIC EFFECTS IN LIGHT-SCATTERING DUE TO OPTICAL PHONONS IN SILICON [J].
BALKANSKI, M ;
WALLIS, RF ;
HARO, E .
PHYSICAL REVIEW B, 1983, 28 (04) :1928-1934
[6]   Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka [J].
Bardhan, Rizia ;
Mukherjee, Shaunak ;
Mirin, Nikolay A. ;
Levit, Stephen D. ;
Nordlander, Peter ;
Halas, Naomi J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (16) :7378-7383
[7]   Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis? [J].
Barreca, Davide ;
Carraro, Giorgio ;
Gombac, Valentina ;
Gasparotto, Alberto ;
Maccato, Chiara ;
Fornasiero, Paolo ;
Tondello, Eugenio .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (14) :2611-2623
[8]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[9]   Engineering titania nanostructure to tune and improve its photocatalytic activity [J].
Cargnello, Matteo ;
Montini, Tiziano ;
Smolin, Sergey Y. ;
Priebe, Jacqueline B. ;
Jaen, Juan J. Delgado ;
Doan-Nguyen, Vicky V. T. ;
McKay, Ian S. ;
Schwalbe, Jay A. ;
Pohl, Marga-Martina ;
Gordon, Thomas R. ;
Lu, Yupeng ;
Baxter, Jason B. ;
Brueckner, Angelika ;
Fornasiero, Paolo ;
Murray, Christopher B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3966-3971
[10]  
Cho CH, 2013, NAT PHOTONICS, V7, P285, DOI [10.1038/nphoton.2013.25, 10.1038/NPHOTON.2013.25]