Degrees of Categoricity and the Hyperarithmetic Hierarchy

被引:49
作者
Csima, Barbara F. [1 ]
Franklin, Johanna N. Y. [2 ]
Shore, Richard A. [3 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
computability theory; computable structure theory; Turing degrees; isomorphisms;
D O I
10.1215/00294527-1960479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every computable ordinal alpha, 0((alpha)) is the degree of categoricity of some computable structure A. We show additionally that for alpha a computable successor ordinal, every degree 2-c.e. in and above 0((alpha)) is a degree of categoricity. We further prove that every degree of categoricity is hyperarithmetic and show that the index set of structures with degrees of categoricity is Pi(1)(1)-complete.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 9 条
[1]  
Ash C. J., 2000, STUDIES LOGIC FDN MA, V144
[2]   Degrees of categoricity of computable structures [J].
Fokina, Ekaterina B. ;
Kalimullin, Iskander ;
Miller, Russell .
ARCHIVE FOR MATHEMATICAL LOGIC, 2010, 49 (01) :51-67
[3]  
Harizanov VS, 1998, STUD LOGIC, V138, P3
[4]  
Hirschfeldt D. R., 2002, Notre Dame Journal of Formal Logic, V43, P51, DOI 10.1305/ndjfl/1071505769
[5]   NON SIGMA-N AXIOMATIZABLE ALMOST STRONGLY MINIMAL THEORIES [J].
MARKER, D .
JOURNAL OF SYMBOLIC LOGIC, 1989, 54 (03) :921-927
[6]  
Rogers H., 1967, THEORY RECURSIVE FUN
[7]  
Sacks Gerald E., 1990, Perspectives in Mathematical Logic., V2
[8]  
Soare R.I., 1987, Perspectives in Mathematical Logic, P437, DOI [10.1007/978-3-662-02460-7, DOI 10.1007/978-3-662-02460-7]
[9]  
White W. M., 2000, THESIS CORNELL U ITH