Hidden symmetry in the confined hydrogen atom problem

被引:29
作者
Pupyshev, VI [1 ]
Scherbinin, AV [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Lab Mol Struct & Quantum Mech, Moscow 119899, Russia
关键词
hydrogen atom; Lenz vector; boundary condition; symmetry;
D O I
10.1016/S0375-9601(02)00516-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical counterpart of the well-known quantum mechanical model of a spherically confined hydrogen atom is examined in terms of the Lenz vector, a dynamic variable featuring the conventional Kepler problem. It is shown that a conditional conservation law associated with the Lenz vector is true, in fair agreement with the corresponding quantum problem previously found to exhibit a hidden symmetry as well. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 14 条
[1]  
Bateman H., 1953, HIGHER TRANSCENDENTA, V1
[2]  
BIEDENHARN LC, 1988, ANGULAR MOMENTUM QUA
[3]  
Bohm A, 1986, QUANTUM MECH FDN APP
[4]   Compressed atoms [J].
Buchachenko, AL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (25) :5839-5846
[5]   NEW VECTOR OPERATORS FOR THE NONRELATIVISTIC COULOMB PROBLEM [J].
DELANGE, OL ;
RAAB, RE .
PHYSICAL REVIEW A, 1986, 34 (03) :1650-1656
[6]  
FROMAN PO, 1987, J MATH PHYS, V28, P1813, DOI 10.1063/1.527441
[7]   PREHISTORY OF RUNGE-LENZ VECTOR [J].
GOLDSTEIN, H .
AMERICAN JOURNAL OF PHYSICS, 1975, 43 (08) :737-738
[8]  
Goldstein H., 1950, Classical Mechanics
[9]   Confined many-electron systems [J].
Jaskolski, W .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 271 (01) :1-66
[10]  
Michels A., 1937, PHYSICA, V4, P981, DOI DOI 10.1016/S0031-8914(37)80196-2