Analytical Model to Find Frozen Orbits for a Lunar Orbiter

被引:51
作者
Abad, A. [1 ]
Elipe, A. [1 ]
Tresaco, E. [1 ]
机构
[1] Univ Zaragoza, Grp Mecan Espacial, Inst Univ Matemat & Aplicac, E-50009 Zaragoza, Spain
关键词
ARTIFICIAL-SATELLITE THEORY; CRITICAL INCLINATION; 433; EROS; MOTION; FAMILIES;
D O I
10.2514/1.38350
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Analytical theories based on Lie-Deprit transforms are used to obtain families of periodic orbits for the problem of an orbiter around the moon. Low and moderately high orbit models are analyzed. Equilibria of the normalized equations of motion provide the representation of a global portrait of families of frozen orbits depending on values of the inclination, eccentricity, and semimajor axis. By means of the inverse transformation it is possible to refine the initial conditions for frozen orbits of a simplified model, and these initial conditions may be used as starters of numerical continuation methods when more complex models are considered.
引用
收藏
页码:888 / 898
页数:11
相关论文
共 31 条
[1]   ATESAT: A symbolic processor for artificial satellite theory [J].
Abad, A ;
Elipe, A ;
Palacian, J ;
San-Juan, JF .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 45 (5-6) :497-510
[2]  
[Anonymous], 1992, INTRO HAMILTONIAN DY
[3]  
[Anonymous], PUBLICATIONS ASTRONO
[4]   SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG [J].
BROUWER, D .
ASTRONOMICAL JOURNAL, 1959, 64 (09) :378-397
[5]  
Brouwer D., 1961, Methods of celestial mechanics
[6]   PAINTING THE PHASE-SPACE PORTRAIT OF AN INTEGRABLE DYNAMICAL SYSTEM [J].
COFFEY, S ;
DEPRIT, A ;
DEPRIT, E ;
HEALY, L .
SCIENCE, 1990, 247 (4944) :833-836
[7]  
COFFEY SL, 1986, CELESTIAL MECH, V39, P365, DOI 10.1007/BF01230483
[8]  
COFFEY SL, 1994, CELEST MECH DYN ASTR, V59, P32
[9]  
Danby J. M. A., 1988, Fundamentals of celestial mechanics, V2nd
[10]   The combined effect of J2 and C22 on the critical inclination of a lunar orbiter [J].
De Saedeleer, B ;
Henrard, J .
MOON AND NEAR-EARTH OBJECTS, 2006, 37 (01) :80-87