Androgen attenuates cardiac fibroblasts activations through modulations of transforming growth factor-β and angiotensin II signaling

被引:64
作者
Chung, Cheng-Chih [1 ,2 ]
Hsu, Rung-Chieh [1 ]
Kao, Yu-Hsun [1 ,3 ]
Liou, Jing-Ping [4 ]
Lu, Yen-Yu [1 ,5 ]
Chen, Yi-Jen [1 ,2 ]
机构
[1] Taipei Med Univ, Coll Med, Grad Inst Clin Med, Taipei 11031, Taiwan
[2] Taipei Med Univ, Wan Fang Hosp, Dept Internal Med, Div Cardiovasc Med, Taipei 11031, Taiwan
[3] Taipei Med Univ, Wan Fang Hosp, Dept Med Educ & Res, Taipei 11031, Taiwan
[4] Taipei Med Univ, Coll Pharm, Sch Pharm, Taipei 11031, Taiwan
[5] Sijhih Cathay Gen Hosp, Div Cardiol, New Taipei City, Taiwan
关键词
Angiotensin; Fibroblasts; Heart failure; Testosterone; Transforming growth factor; CHRONIC HEART-FAILURE; DOUBLE-BLIND; TESTOSTERONE THERAPY; COLLAGEN PRODUCTION; CONTROLLED-TRIAL; TGF-BETA; MEN; INHIBITION; RECEPTORS; SURVIVAL;
D O I
10.1016/j.ijcard.2014.07.077
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Androgen deficiency produces heart failure, which can be ameliorated by testosterone supplementation. Cardiac fibrosis plays a critical role in the pathophysiology of heart failure. This study aimed to evaluate whether testosterone can attenuate cardiac fibroblast activity through modulating transforming growth factor (TGF)-beta and angiotensin (Ang) II signaling. Methods: Migration, proliferation, myofibroblast differentiation, collagen production, and transcription signaling were evaluated in adult male rat (weighing 300-350 g) cardiac fibroblasts with and without incubation with testosterone (10 nM) and co-administration of TGF-beta 1 (10 ng/ml) or Ang II (100 nM) by cell migration analysis, proliferation assay, soluble collagen measurement, zymographic analysis, immunofluorescence microscopy, real-time PCR and Western blot. Results: Compared to those without testosterone, testosterone-treated fibroblasts exhibited less collagen production. Testosterone-treated fibroblasts also had less migration, proliferation, myofibroblast differentiation, and collagen production in the presence of TGF-beta 1, or had less collagen production with Ang II. Testosterone-treated fibroblasts had decreased phosphorylated Akt, mammalian target of rapamycin, and 4E binding protein-1 irrespective of TGF-beta 1 treatment and had increased matrix metalloproteinase (MMP)-2 in the presence of TGF-beta 1 treatment, and had decreased phosphorylated P38 and Smad 2/3 levels in the presence of Ang II. Cardiac fibroblasts with and without testosterone had similar mRNA and protein expressions of total Akt and total Smad 2/3 irrespective of TGF-beta 1 or Ang II treatment. Conclusion: Physiological level of testosterone attenuated Akt and Smad 2/3 phosphorylation mediated by TGF-beta 1 and angiotensin II respectively, which can result in decreased cardiac fibroblast activation and potentially contribute to beneficial effects in heart failure. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:386 / 393
页数:8
相关论文
共 50 条
[41]   Dexamethasone Effect on the Expression of Transforming Growth Factor-β1/Smads Signaling Pathway in Benign Biliary Stricture Fibroblasts in Rodent [J].
Li, Ke-Yue ;
Shi, Cheng-Xian ;
Huang, Jian-zhao ;
Tang, Ke-li .
JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2017, 27 (03) :131-134
[42]   Regulation of autophagy by transforming growth factor-β (TGFβ) signaling [J].
Suzuki, Hiroshi I. ;
Kiyono, Kunihiko ;
Miyazono, Kohei .
AUTOPHAGY, 2010, 6 (05) :645-647
[43]   Disruption of transforming growth factor-β signaling in thyroid follicular epithelial cells or intrathyroidal fibroblasts does not promote thyroid carcinogenesis [J].
Shimamura, Mika ;
Nakahara, Mami ;
Kurashige, Tomomi ;
Yasui, Kazuaki ;
Nakashima, Masahiro ;
Nagayama, Yuji .
ENDOCRINE JOURNAL, 2014, 61 (03) :297-302
[44]   Comparison of transforming growth factor-β/Smad signaling between normal dermal fibroblasts and fibroblasts derived from central and peripheral areas of keloid lesions [J].
Tsujita-Kyutoku, M ;
Uehara, N ;
Matsuoka, Y ;
Kyutoku, S ;
Ogawa, Y ;
Tsubura, A .
IN VIVO, 2005, 19 (06) :959-963
[45]   Induction of cardiac fibrosis by transforming growth factor-β1 [J].
Lijnen, PJ ;
Petrov, VV ;
Fagard, RH .
MOLECULAR GENETICS AND METABOLISM, 2000, 71 (1-2) :418-435
[46]   Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-β type II receptor [J].
Noh, Hyunjin ;
Kim, Hyun J. ;
Yu, Mi R. ;
Kim, Wan-Young ;
Kim, Jin ;
Ryu, Jung H. ;
Kwon, Soon H. ;
Jeon, Jin S. ;
Han, Dong C. ;
Ziyadeh, Fuad .
LABORATORY INVESTIGATION, 2012, 92 (11) :1583-1596
[47]   Tadalafil Attenuates Angiotensin II-Induced Extracellular Matrix Remodeling in Cardiac Fibroblasts Through TGF-β1/Smad3 Signaling Pathway [J].
Ye, Wenyi ;
Huang, Junling ;
Yang, Jun ;
Wang, Ling ;
Dai, Jin ;
Wang, Xiao .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2023, 19 (06) :1084-1090
[48]   Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts [J].
Aschner, Yael ;
Nelson, Meghan ;
Brenner, Matthew ;
Roybal, Helen ;
Beke, Keriann ;
Meador, Carly ;
Foster, Daniel ;
Correll, Kelly A. ;
Reynolds, Paul R. ;
Anderson, Kelsey ;
Redente, Elizabeth F. ;
Matsuda, Jennifer ;
Riches, David W. H. ;
Groshong, Steve D. ;
Pozzi, Ambra ;
Sap, Jan ;
Wang, Qin ;
Rajshankar, Dhaarmini ;
McCulloch, Christopher A. G. ;
Zemans, Rachel L. ;
Downey, Gregory P. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2020, 319 (02) :L294-L311
[49]   Fibrosis in Preeclamptic Placentas Is Associated with Stromal Fibroblasts Activated by the Transforming Growth Factor-β1 Signaling Pathway [J].
Ohmaru-Nakanishi, Takako ;
Asanoma, Kazuo ;
Fujikawa, Mai ;
Fujita, Yasuyuki ;
Yagi, Hiroshi ;
Onoyama, Ichiro ;
Hidaka, Nobuhiro ;
Sonoda, Kenzo ;
Kato, Kiyoko .
AMERICAN JOURNAL OF PATHOLOGY, 2018, 188 (03) :683-695
[50]   Blocking transforming growth factor-β receptor sig naling down-regulates transforming growth factor-β1 autoproduction in keloid fibroblasts [J].
刘伟 ;
蔡泽浩 ;
王丹茹 ;
武小莉 ;
崔磊 ;
商庆新 ;
钱云良 ;
曹谊林 .
中华创伤杂志(英文版), 2002, (02) :14-18