Phase-averaged transport for quasi-periodic hamiltonians

被引:8
作者
Bellissard, J
Guarneri, I
Schulz-Baldes, H
机构
[1] Univ Toulouse 3, F-31062 Toulouse, France
[2] Univ Insubria Como, I-22100 Como, Italy
[3] Ist Nazl Fis Mat, I-20133 Milan, Italy
[4] Ist Nazl Fis Nucl, Sezione Pavia, I-27100 Pavia, Italy
[5] Univ Calif Irvine, Irvine, CA 92697 USA
关键词
D O I
10.1007/s002200200642
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a class of discrete quasi-periodic Schrodinger operators defined by covariant representations of the rotation algebra, a lower bound on phase-averaged transport in terms of the multifractal dimensions of the density of states is proven. This result is established under a Diophantine condition on the incommensuration parameter. The relevant class of operators is distinguished by invariance with respect to symmetry automorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu) operator. As a by-product, a new solution of the frame problem associated with Weyl-Heisenberg-Gabor lattices of coherent states is given.
引用
收藏
页码:515 / 539
页数:25
相关论文
共 30 条