An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index

被引:51
作者
Bhrawy, A. H. [1 ,2 ]
Doha, E. H. [3 ]
Tenreiro Machado, J. A. [4 ]
Ezz-Eldien, S. S. [5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[4] Polytech Porto, Dept Elect Engn, Inst Engn, P-4200072 Oporto, Portugal
[5] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt
关键词
Fractional optimal control problem; legendre polynomials; operational matrix; lagrange multiplier method; caputo derivatives; riemann-liouville integrals; OPERATIONAL MATRIX; INTEGRATION; ORDER; EQUATIONS;
D O I
10.1002/asjc.1109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
引用
收藏
页码:2389 / 2402
页数:14
相关论文
共 37 条
[1]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[2]   A quadratic numerical scheme for fractional optimal control problems [J].
Agrawal, Om P. .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (01) :0110101-0110106
[3]  
Akrami MH, 2013, IRAN J SCI TECHNOL A, V37, P439
[4]   Long memory processes and fractional integration in econometrics [J].
Baillie, RT .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :5-59
[5]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[6]  
Bhrawy AH, 2014, B MALAYS MATH SCI SO, V37, P983
[7]   Efficient generalized Laguerre-spectral methods for solving multi-term fractional differential equations on the half line [J].
Bhrawy, A. H. ;
Baleanu, D. ;
Assas, L. M. .
JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (07) :973-985
[8]   The operational matrix of fractional integration for shifted Chebyshev polynomials [J].
Bhrawy, A. H. ;
Alofi, A. S. .
APPLIED MATHEMATICS LETTERS, 2013, 26 (01) :25-31
[9]   Analog fractional order controller in temperature and motor control applications [J].
Bohannan, Gary W. .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1487-1498
[10]  
Bryson A.E, 1975, APPL OPTIMAL CONTROL, V2