A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity

被引:190
|
作者
Chen, Lin [1 ,2 ]
Lu, Zhiqiang [1 ]
Lin, Weilong [1 ]
Li, Junzi [1 ]
Pan, Haihong [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Nanning 530000, Peoples R China
[2] Guangxi Univ, Coll Mech Engn, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Nanning 530000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-health; Online estimation; Ohmic internal resistance; Capacity; Correlation analysis; SUPPORT VECTOR MACHINE; ELECTRIC VEHICLES; PARTICLE FILTER; MODEL; PREDICTION; CHARGE; IDENTIFICATION; PERFORMANCE; VOLTAGE;
D O I
10.1016/j.measurement.2017.11.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For secure and reliable operation of lithium-ion batteries in electric vehicles, diagnosis of the battery degradation is essential. This can be achieved by monitoring the increase of the internal resistance of the battery cells over the whole lifetime of the battery. In this paper, a method to estimate state of health (SoH) is presented through the established linear relationship between ohmic internal resistance and capacity fade. Firstly, the Thevenin model and the recursive least squares (RLS) algorithm are applied to simulate battery dynamic characteristics and identify model parameters, respectively. Secondly, based on the established linear relationship between ohmic internal resistance and capacity fade, both ohmic internal resistances at the start and the end of the battery's lifetime are estimated by only two random discharge cycles at different aging stages. Finally, an online SoH estimator is formulated and applied to estimate the SoH of a battery's remaining cycles. In addition, a series of experiments were carried out based on dynamic loading to verify the proposed method. The SoH estimates indicate that the evaluated maximum SoH errors are within +/- 4%. The proposed SoH estimation method is consistent with the measurement data of the battery and shows good results with very low computational effort.
引用
收藏
页码:586 / 595
页数:10
相关论文
共 50 条
  • [41] State-of-health estimation and remaining useful life prediction of lithium-ion batteries using DnCNN-CNN
    Chae, Sun Geu
    Bae, Suk Joo
    Oh, Ki-Yong
    JOURNAL OF ENERGY STORAGE, 2025, 106
  • [42] Constant current charging time based fast state-of-health estimation for lithium-ion batteries
    Lin, Chuanping
    Xu, Jun
    Shi, Mingjie
    Mei, Xuesong
    ENERGY, 2022, 247
  • [43] Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis
    Yang, Jufeng
    Xia, Bing
    Huang, Wenxin
    Fu, Yuhong
    Mi, Chris
    APPLIED ENERGY, 2018, 212 : 1589 - 1600
  • [44] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [45] State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression
    Li, Fang
    Min, Yongjun
    Zhang, Ying
    Zhang, Yong
    Zuo, Hongfu
    Bai, Fang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 242
  • [46] State-of-health prediction for lithium-ion batteries via electrochemical impedance spectroscopy and artificial neural networks
    Li, Yige
    Dong, Bo
    Zerrin, Taner
    Jauregui, Evan
    Wang, Xichao
    Hua, Xia
    Ravichandran, Dwaraknath
    Shang, Ruoxu
    Xie, Jia
    Ozkan, Mihrimah
    Ozkan, Cengiz S.
    ENERGY STORAGE, 2020, 2 (05)
  • [47] A review on rapid state of health estimation of lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Zhao, Xiaoyu
    Fu, Lei
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew D.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [48] A Fast Online State of Health Estimation Method for Lithium-Ion Batteries Based on Incremental Capacity Analysis
    Qu, Shaofei
    Kang, Yongzhe
    Gu, Pingwei
    Zhang, Chenghui
    Duan, Bin
    ENERGIES, 2019, 12 (17)
  • [49] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [50] A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles
    Zhang, Chaolong
    Zhao, Shaishai
    Yang, Zhong
    Chen, Yuan
    FRONTIERS IN ENERGY RESEARCH, 2022, 10