A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity

被引:190
|
作者
Chen, Lin [1 ,2 ]
Lu, Zhiqiang [1 ]
Lin, Weilong [1 ]
Li, Junzi [1 ]
Pan, Haihong [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Nanning 530000, Peoples R China
[2] Guangxi Univ, Coll Mech Engn, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Nanning 530000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-health; Online estimation; Ohmic internal resistance; Capacity; Correlation analysis; SUPPORT VECTOR MACHINE; ELECTRIC VEHICLES; PARTICLE FILTER; MODEL; PREDICTION; CHARGE; IDENTIFICATION; PERFORMANCE; VOLTAGE;
D O I
10.1016/j.measurement.2017.11.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For secure and reliable operation of lithium-ion batteries in electric vehicles, diagnosis of the battery degradation is essential. This can be achieved by monitoring the increase of the internal resistance of the battery cells over the whole lifetime of the battery. In this paper, a method to estimate state of health (SoH) is presented through the established linear relationship between ohmic internal resistance and capacity fade. Firstly, the Thevenin model and the recursive least squares (RLS) algorithm are applied to simulate battery dynamic characteristics and identify model parameters, respectively. Secondly, based on the established linear relationship between ohmic internal resistance and capacity fade, both ohmic internal resistances at the start and the end of the battery's lifetime are estimated by only two random discharge cycles at different aging stages. Finally, an online SoH estimator is formulated and applied to estimate the SoH of a battery's remaining cycles. In addition, a series of experiments were carried out based on dynamic loading to verify the proposed method. The SoH estimates indicate that the evaluated maximum SoH errors are within +/- 4%. The proposed SoH estimation method is consistent with the measurement data of the battery and shows good results with very low computational effort.
引用
收藏
页码:586 / 595
页数:10
相关论文
共 50 条
  • [31] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [32] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [33] Ultrasound simulation technique as state-of-health estimation method of lithium-ion batteries
    Gaviria-Cardona, J. P.
    Guzman-De las Salas, Michael
    Montoya-Escobar, Nicolas
    Florez-Escobar, Whady
    Valencia-Cardona, Raul
    Vladimir Martinez, Hader
    2021 IEEE UFFC LATIN AMERICA ULTRASONICS SYMPOSIUM (LAUS), 2021,
  • [34] Co-Estimation of State-of-Charge and State-of-Health for High-Capacity Lithium-Ion Batteries
    Xiong, Ran
    Wang, Shunli
    Feng, Fei
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    Fernandez, Carlos
    BATTERIES-BASEL, 2023, 9 (10):
  • [35] Time Series Feature extraction for Lithium-Ion batteries State-Of-Health prediction
    Jorge, Ines
    Mesbahi, Tedjani
    Samet, Ahmed
    Bone, Romuald
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [36] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [37] A model for state-of-health estimation of lithium ion batteries based on charging profiles
    Bian, Xiaolei
    Liu, Longcheng
    Yan, Jinying
    ENERGY, 2019, 177 : 57 - 65
  • [38] A novel state-of-health estimation method for fast charging lithium-ion batteries based on an adversarial encoder network
    Fan, Yuqian
    Wang, Huanyu
    Zheng, Ying
    Zhao, Jifei
    Wu, Haopeng
    Wang, Ke
    Yang, Shuting
    Tan, Xiaojun
    JOURNAL OF ENERGY STORAGE, 2023, 63
  • [39] A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery
    Bao, Zhengyi
    Jiang, Jiahao
    Zhu, Chunxiang
    Gao, Mingyu
    ENERGIES, 2022, 15 (12)
  • [40] On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries
    Wang, Tiansi
    Pei, Lei
    Wang, Tingting
    Lu, Rengui
    Zhu, Chunbo
    ENERGIES, 2015, 8 (08): : 8467 - 8481