Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation

被引:21
作者
Bellazzini, Jacopo [1 ]
Ghimenti, Marco [2 ]
Le Coz, Stefan [3 ]
机构
[1] Univ Sassari, I-07100 Sassari, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56100 Pisa, Italy
[3] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
Asymptotic behavior; Klein-Gordon equation; Multi-soliton; SCALAR FIELD-EQUATIONS; GLOBAL CAUCHY-PROBLEM; STANDING WAVES; STRONG INSTABILITY; MULTISOLITON SOLUTIONS; ASYMPTOTIC STABILITY; GROUND-STATES; SOLITONS; GKDV; CONSTRUCTION;
D O I
10.1080/03605302.2013.860988
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Klein-Gordon equation in R-d. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
引用
收藏
页码:1479 / 1522
页数:44
相关论文
共 53 条
[1]  
Ambrosetti A., 2007, NONLINEAR ANAL SEMIL
[2]  
[Anonymous], 1997, ADV PARTIAL DIFFEREN
[3]   MAX-MIN CHARACTERIZATION OF THE MOUNTAIN PASS ENERGY LEVEL FOR A CLASS OF VARIATIONAL PROBLEMS [J].
Bellazzini, Jacopo ;
Visciglia, Nicola .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) :3335-3343
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   Spectra of linearized operators for NLS solitary waves [J].
Chang, Shu-Ming ;
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1070-1111
[6]   MULTI-SOLITONS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
Cote, Raphael ;
Munoz, Claudio .
FORUM OF MATHEMATICS SIGMA, 2014, 2
[7]   Construction of a Multisoliton Blowup Solution to the Semilinear Wave Equation in One Space Dimension [J].
Cote, Raphael ;
Zaag, Hatem .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (10) :1541-1581
[8]   High-speed excited multi-solitons in nonlinear Schrodinger equations [J].
Cote, Raphael ;
Le Coz, Stefan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (02) :135-166
[9]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[10]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243